
An Experiment on Bare-Metal BigData Provisioning

Ata Turk
Boston University

Ravi S. Gudimetla
Northeastern University

Emine Ugur Kaynar
Boston University

Jason Hennessey
Boston University

Sahil Tikale
Boston University

Peter Desnoyers
Northeastern University

Orran Krieger
Boston University

Abstract
Many BigData customers use on-demand platforms in
the cloud, where they can get a dedicated virtual clus-
ter in a couple of minutes and pay only for the time they
use. Increasingly, there is a demand for bare-metal big-
data solutions for applications that cannot tolerate the
unpredictability and performance degradation of virtu-
alized systems. Existing bare-metal solutions can intro-
duce delays of 10s of minutes to provision a cluster by
installing operating systems and applications on the lo-
cal disks of servers. This has motivated recent research
developing sophisticated mechanisms to optimize this in-
stallation. These approaches assume that using network
mounted boot disks incur unacceptable run-time over-
head. Our analysis suggest that while this assumption is
true for application data, it is incorrect for operating sys-
tems and applications, and network mounting the boot
disk and applications result in negligible run-time impact
while leading to faster provisioning time.

1 Introduction

Today, virtualized IaaS based BigData analytics solu-
tions such as those provided by Amazon EMR [1] and
IBM BigInsights [2] are boasting significant shares of
the BigData analytics market [3]. Virtualization, at least
in the way it is enabled in today’s clouds, can intro-
duce significant overhead, unpredictability, and secu-
rity concerns, which is not tolarable for certain appli-
cations [4, 5, 6]. To address the needs of applications
that are sensitive to these overheads, cloud vendors like
IBM [7], Rackspace [8], and Internap [9] have started to
serve bare-metal IaaS cloud solutions, with much of the
focus being on supporting on-demand bare-metal Big-
Data platforms.

All these Bare-metal cloud solutions install the ten-
ant’s operating system and application into the server’s
local disks, incurring long delays for the user of the plat-

form. Projects such as Ironic [10], MaaS [11], Em-
ulab [12] have developed sophisticated mechanisms to
make this process efficient. A recent ASPLOS paper by
Omote et al. [13] goes a step further to reduce these de-
lays, lazily copying the image to local disk while running
the application virtualized, and then de-virtualizing when
copying is complete.

Is all this effort really necessary? In fact Omote et
al [13] observe that network booting was actually faster
than their approach, but asserted it would incur a “contin-
ual overhead”, directing every disk I/O over the network.
However, it is not clear if they considered the natural ap-
proach of having a network-mounted boot drive (with OS
files and applications) and using the local drive for just
application data.

To evaluate this option we create a simple prototype
where client machines (24-core 10GbE servers, RHEL
7.1) access their kernel and init ramdisk via standard
network boot mechanisms (PXE), mount their root file
system with pre-installed applications (Hadoop bench-
marks) from an iSCSI volume located on a remote server,
and use local disk for ephemeral storage (i.e. /swap,
/tmp, and Hadoop data). With this approach, which
involved a few lines of config file changes, we found
that the run time overhead of having a network mounted
boot drive is in fact negligible. After a short startup
phase there are very few subsequent reads from the boot
disk (around 3KB/s over 10 hours) suggesting that file
caching is very effective for the boot drive. Boot disk
writes, mostly to application log files, average 14KB/s.

These results strongly suggest that the enormous effort
by on-demand bare-metal platforms to reduce the delay
and overhead of installing tenants operating systems on
local disks may be misguided. The much simpler ap-
proach, of separating boot and data disks and handling
them differently, appears to offer improved provisioning
time with little or no runtime degradation. Moreover, a
system based on this approach, can allow the boot drives
to be stored in a centralized repository, bringing to bare

1



Figure 1: Architecture of our network mounted BigData
provisioning environment and cluster provisioning flow.

metal environments many of the same capabilities avail-
able on virtualized platforms today. We are starting to
develop a new Bare Metal Imaging (BMI) service based
on this approach.

In the remainder of the paper, Section 2 describes the
prototype we built to evaluating our approach to bare-
metal BigData cluster provisioning. Section 3 presents
the evaluation results we obtained. Related works are
discussed in Section 4, and in Section 5 we conclude with
a discussion of our findings.

2 The Prototype

Figure 1 shows the simple prototype we developed to
evaluate our approach. HaaS [14] is a service we previ-
ously developed to allow users to allocate and provision
physical nodes out of a shared pool. A single VM was
used in the prototype for PXE services (DHCP, TFTP)
and as an iSCSI server, with images (exposed to nodes as
iSCSI targets) stored in a shared Ceph file system. Ceph
provides us with a distributed storage system that sup-
ports efficient cloning of files. Most of the functionality
in the prototype was implemented as bash scripts that in-
teract with Ceph (to clone images), the provisioning VM,
and the HaaS service.

We chose iSCSI, rather than NFS, as the protocol
for mounting the drives because of the simplicity of
installation—rather than crafting a shareable file system,
we were able to connect a server to a blank iSCSI vol-
ume, perform a standard operating system installation,
and then copy the resulting image file. Moreover, with
the right hardware support, it should be possible to boot
an iSCSI mounted drive with no changes to the operating
system being booted. In addition, iSCSI does not incur
the overhead of NFS to validate that potentially shared
files have not been modified.

As shown in Figure 1, provisioning a cluster has four
main steps:

1. Node Reservation: Provisioning scripts interact
with HaaS to allocate physical servers.

Local Disk iSCSI
0

200

400

600

800

1000

1200

1400

El
ap

se
d 

Ti
m

e 
(S

ec
s)

Bigdata Configuration
Bigdata Installation
OS Reboot
Firmware Initialization
Post Setup Software Installation
Package Installation
OS Boot(inc. Kernel+Initrd Download)
DHCP request
Firmware Initialization
Haas Power Cycle
Ceph Cloning
Haas Initilization

Figure 2: Provisioning time comparison of local disk in-
stallation and network (iSCSI) mounting.

2. Image Preparation: A golden image is cloned to cre-
ate an image for each node.

3. Per-node Configuration: Each image is modi-
fied (using loopback mount) to perform per-node
configuration such as SSH keys, cluster IP ad-
dresses (/etc/hosts), and specifying application-
specific functionality. Each image is then exposed
as an iSCSI volume by the iSCSI server.

4. PXE Boot: On boot the node requests configura-
tion information via DHCP, downloading its kernel,
initial ramdisk, and a configuration file giving the
iSCSI address for that node’s remote boot disk.

This prototype is designed to provide us with basic
performance information, and has obvious limitations
from both a functionality and performance perspective.
A real implementation would have all the functional-
ity implemented as bash scripts provided by an API-
accessible service. The single provisioning VM will ob-
viously be a performance bottleneck in the long term, as
e.g. multiple iSCSI servers will be needed to scale to
large numbers of nodes. Despite these issues, the current
implementation provides a proof of concept, as a more
carefully-constructed system would provide even better
performance.

3 Evaluation

We tested the prototype on a HaaS-managed 48-node
cluster; each server was equipped with two Intel Xeon
E5-2630L CPUs, 128 GB memory, 300 GB 10K SAS
HDDs (two nodes had 1 TB 7.2K SATA HDDs), and two
Intel 82599ES 10 Gbit NICs. Storage was provided by
a four-node Fujitsu CD10000 Ceph storage appliance,
with 4 10 Gbit external NICs and internal 40 Gbit Infini-
Band interconnect.

Figure 2 iSCSI bar shows the time taken to start up
from scratch a bare-metal Hadoop image using our pro-
totype. As we can see from the figure almost half the

2



2 Node 4 Node 8 Node
0

50

100

150

200

250

300
El

ap
se

d 
Ti

m
e 

(S
ec

s)

Bigdata Post Script
Booting
Ceph Cloning
Haas Initilization

Figure 3: Scalability analysis for network (iSCSI)
mounted BigData cluster provisioning.

time is spent in firmware initialization, and the overall
boot time is very rapid (260 seconds) and comparable to
network boot results presented in prior work [13]. As
a comparison point, the Local Disk bar shows the time
for a full install of a Hadoop environment using standard
tools (RedHat Foreman for OS installation, Apache Big-
Top for Hadoop installation, . . . ), as is typically done in
managed system environments. The remainder of this
section compares the runtime overheads of these two in-
stallation mechanisms.

We have made no effort to make the prototype scal-
able. The provisioning scripts are sequential, cloning
each image in turn, and then starting the nodes boot-
ing. Moreover, there is only a single provisioning VM in
the prototype. Figure 3 demonstrates that even this very
simple design is sufficient to provision a modest number
of nodes in parallel with relatively modest degradation
as we increase the number of concurrently provisioned
nodes from two to eight.

The main goal of the prototype was to understand what
is the run time impact of a network mounted boot drive
for a Big Data platform. Figures 4 and 5 show the per
node cumulative read and write iSCSI traffic during ini-
tial provisioning and then over five consecutive runs of
random data generation followed by sorting, using the
Hadoop Sort example, covering a duration of 7 to 17
hours for 128 GB and 256 GB of data respectively. These
experiments were performed on two nodes allocated out
of the HaaS cluster with local data stored in the one ter-
abyte drive.

While we do not have a comparison to provisioning
systems that copy (rather than install) an image to the
local disk, one interesting data point is how much data
would be transferred in the two cases. For the iSCSI
case, Figures 4 shows that only around 250MBytes of
the Boot disk are read over 10 hours. In contrast, out of
the 8GB boot image image, 2.9GB were actually used. In
other words, any image distribution service would need

In
iti

al
Pr

ov
is

io
ni

ng
D

at
a

G
en

er
at

io
n 

1

So
rt 

1

D
at

a
G

en
er

at
io

n 
2

So
rt 

2

D
at

a
G

en
er

at
io

n 
3

So
rt 

3

D
at

a
G

en
er

at
io

n 
4

So
rt 

4

D
at

a
G

en
er

at
io

n 
5

So
rt 

50

100

200

300

C
um

ul
at

iv
e 

iS
C

SI
 re

ad
s 

pe
r n

od
e 

(M
B)

iSCSI Reads: Runs with 256GB Data
iSCSI Reads: Runs with 128GB Data

Figure 4: Per-node cumulative iSCSI read volume (MB).

In
iti

al
Pr

ov
is

io
ni

ng
D

at
a

G
en

er
at

io
n 

1

So
rt 

1

D
at

a
G

en
er

at
io

n 
2

So
rt 

2

D
at

a
G

en
er

at
io

n 
3

So
rt 

3

D
at

a
G

en
er

at
io

n 
4

So
rt 

4

D
at

a
G

en
er

at
io

n 
5

So
rt 

50

100

200

300

400

500

600

700

C
um

ul
at

iv
e 

iS
C

SI
 w

rit
es

 p
er

 n
od

e 
(M

B)

iSCSI Writes - Runs with 256GB Data
iSCSI Writes - Runs with 128GB Data

Figure 5: Cumulative writes (MB) made by servers on
the iSCSI gateway.

to transfer 2.9GB over the network to each node. Worse
yet, it would then need to write this data to the local disk,
at typical speeds of 100 MB/s or less for single-disk sys-
tems, or 1

10 of network speed.
In Figure 4, both curves flatten after repeated runs,

demonstrating that (even with the 256GB case where to-
tal data handled—at minimum five runs times 128GB
per machine, times a replication factor of two—is sub-
stantially larger than system memory) that the file cache
is effective at caching the boot drive. After initial boot
and application startup, the sustained read bandwidth in-
curred is around 3KBytes per second; effectively negli-
gible.

Figure 5 shows the writes to the network mounted
storage; in contrast to the read case, log writes con-
tinue throughout the experiment, at an average rate of
approximately 14 KB/s. On further examination these
writes target paths such as /var/log, /hadoop/log,
and /var/run.1 Most of these writes are log file up-
dates made by Hadoop; although they could be directed
to local storage, we did not do so due to their utility for
debugging and negligible rate.

The above figures examined the read/write overhead
for relatively large data sets for just two nodes, and took
more than 17 hours to run. To examine the performance
difference between the two configurations, we also timed

1We should note that, in our deployments, /tmp and /swap are
configured to reside on the local disk of servers.

3

/var/log
/hadoop/log
/var/run
/tmp
/swap


17
1 31

9

61
6

11
87

23
14

17
1 31

8

61
7

11
76

22
81

64 11
5 30

0

54
2

10
73

69 12
0 23

8

55
5

13
61

60 75 76 11
8 19

9

52 63 86 12
5 20

1

Data Size (GB)
0

400

800

1200

1600

2000

2400

2800

El
ap

se
d 

Ti
m

e 
(s

ec
s)

WordCount - Local Disk
WordCount - iSCSI Mounted
Sort - Local Disk
Sort - iSCSI Mounted
Grep - Local Disk
Grep - iSCSI Mounted

8GB 16GB 32GB 64GB 128GB

Figure 6: Performance comparison of Hadoop WordCount, Sort, and Grep applications on local disk based and iSCSI
mounted systems.

a series of experiments on 8 node clusters as we varied
the data set from 8GB to 128GB. In Figure 6 we com-
pare the runtime of standard Hadoop benchmarks (Sort,
Grep, WordCount) running on local disk-installed and
network mounted clusters. Reported numbers are av-
erage of five runs; we observed that deviations among
runs on the same configuration are negligible. As seen
from the figure, the difference in runtime performances
are negligible, with the exception of Sort experiments
for 32GB data and 128GB data; we hypothesize that this
may be caused by the non-deterministic behavior of ran-
dom sorting benchmarks.

4 Related work

Network booting of computers came into widespread use
almost 30 years ago [15], with remote access to both ini-
tial boot files (e.g. kernel) and file system enabling the
creation of clusters of diskless workstations. More re-
cently, remote storage has become popular in the high-
performance computing field [16]. Some of the largest
installations (e.g. those from Cray [17]) use this tech-
nique to allow smaller and more reliable diskless com-
pute nodes, while others (Gordon [18]) add high-speed
local storage (e.g. SSD) for ephemeral data.

In other fields, initial network booting (i.e. PXE)
is widely used to initiate OS installation to local disk,
but network boot with remote storage access is rarely
used. Instead, a rich set of open source and commer-
cial products have been developed for automated provi-
sioning of bare-metal systems. Chandrasekar and Gib-
son [19] provide a comparative analysis of commonly
used provisioning systems, namely Emulab [12], Open-
Stack Ironic [10], Crowbar [20], Razor [21], and Cob-
bler [22] and evaluate in detail Emulab and OpenStack
Ironic. All of these bare-metal provisioning frameworks
copy a disk image to the nodes and use additional config-
uration management systems to set up the desired appli-
cations on provisioned systems. Canonical’s Metal-as-a-

Service (MAAS) [11] provides a similar solution to host
a cloud on the hardware owned by a customer.

Although there are many commercial offerings for
BigData as a Service, such as Amazon Elastic MapRe-
duce [1], Google Cloud DataProc [23], and others, most
of these are based on virtual machine deployment. In-
ternap [9] and Rackspace [8] offer Hadoop on bare-
metal solutions using the OpenStack Ironic [10] provi-
sioning solution, typically coupled with BigData applica-
tion platforms such as Hortonworks Data Platform [24],
Cloudera Enterprise [25], or MapR Converged Data Plat-
form [26].

In addition to open source products and commercial
solutions, there exists a flurry of academic studies that
investigate problems related to the focus of this study.
Ekanayake and Fox. [27] study the overhead incurred by
Hadoop based applications run on bare metal vs virtual
nodes in a Cloud infrastructure. Their studies corrobo-
rate the performance gains achieved by bare-metal de-
ployment of BigData solutions. Omote et al. [13] inves-
tigate mechanisms for fast provisioning of operating sys-
tems and reducing boot time on bare-metal systems in
clouds. They argue that long startup times of bare metal
servers act as a significant inhibitor in providing agility
and elasticity in bare-metal clouds, and propose BMCast,
an OS deployment system with a special purpose de-
virtualizable Virtual Machine Manager that supports OS-
transparent quick startup of bare-metal instances. This
approach, which we think is very novel and useful for
many use cases, takes longer to provision then network
mounting, and lacks the potential benefits of image man-
agement a network mounted approach can offer.

5 Conclusion

Bare-metal on-demand BigData platforms are becoming
increasingly important with a number of commercial and
research offerings. Enormous effort has gone on in these
systems to reduce the delay to install software into the

4



local disks. While previous work acknowledged that net-
work booting is faster than a local installation, they re-
jected this approach because of the assumption that it
would incur an ongoing unacceptable overhead. We hy-
pothesized that if we separate boot and data disks, using
local storage for data, this overhead would be substan-
tially reduced. We demonstrate with a simple prototype
that this very simple strategy preserves all the advantages
of network booting while incurring negligible runtime
overhead.

Acknowledgments

We would like to thank Dan Shatzberg for his early sug-
gestions in supporting a network mounted imaging ser-
vice, and the MOC team in general for support and un-
derstanding while performing the experiments. We also
thank Cisco and Fujitsu for their generous donations of
server hardware and Ceph storage, respectively.

This research was supported in part by the MassTech
Collaborative Research Matching Grant Program, NSF
awards 1347525 and 1414119 and several commercial
partners of the Massachusetts Open Cloud who may be
found at http://www.massopencloud.org.

References

[1] Amazon, “Amazon elastic mapreduce (amazon
emr),” https://aws.amazon.com/elasticmapreduce/,
2015.

[2] IBM, “Ibm biginsights for apache hadoop,”
www.ibm.com/software/products/en/ibm-
biginsights-for-apache-hadoop, 2015.

[3] J. Kelly, “Hadoop-nosql software and
services market forecast, 2014-2017,”
http://wikibon.com/hadoop-nosql-software-
and-services-market-forecast-2013-2017, 2014.

[4] ZDNet, “Facebook: Virtualisation does not
scale,” http://www.zdnet.com/article/facebook-
virtualisation-does-not-scale/, 2011.

[5] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan,
T. Fahringer, and D. Epema, “Performance analy-
sis of cloud computing services for many-tasks sci-
entific computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 22, no. 6, pp. 931–945, Jun. 2011.

[6] T. Ristenpart, E. Tromer, H. Shacham, and S. Sav-
age, “Hey, you, get off of my cloud: Exploring in-
formation leakage in third-party compute clouds,”
in Proceedings of the 16th ACM Conference on
Computer and Communications Security, ser. CCS

’09. New York, NY, USA: ACM, 2009, pp. 199–
212.

[7] Softlayer, “Big data solutions,” http:
//www.softlayer.com/big-data, 2015.

[8] Rackspace, “Rackspace cloud big data onmetal,”
http://go.rackspace.com/baremetalbigdata/, 2015.

[9] Internap, “Bare-metal agileserver,” http:
//www.internap.com/bare-metal/, 2015.

[10] Openstack, “Ironic,” http://docs.openstack.org/
developer/ironic/deploy/user-guide.html, 2015.

[11] Canonical, “Metal as a service (maas),” http://
maas.ubuntu.com/docs/, 2015.

[12] D. Anderson, M. Hibler, L. Stoller, T. Stack,
and J. Lepreau, “Automatic Online Validation of
Network Configuration in the Emulab Network
Testbed,” in IEEE International Conference on Au-
tonomic Computing, 2006. ICAC ’06, Jun. 2006,
pp. 134–142.

[13] Y. Omote, T. Shinagawa, and K. Kato, “Improv-
ing Agility and Elasticity in Bare-metal Clouds,”
in Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS
’15. New York, NY, USA: ACM, 2015, pp. 145–
159.

[14] J. Hennessey, C. Hill, I. Denhardt, V. Venugopal,
G. Silvis, O. Krieger, and P. Desnoyers, “Hardware
as a service - enabling dynamic, user-level
bare metal provisioning of pools of data center
resources.” in 2014 IEEE High Performance
Extreme Computing Conference, Waltham, MA,
USA, Sep. 2014. [Online]. Available: https:
//open.bu.edu/handle/2144/11221

[15] R. Gusella, “The Analysis of Diskless Workstation
Traffic on an Ethernet,” Tech. Rep., Nov. 1987.

[16] C. Engelmann, H. Ong, and S. Scott, “Evaluating
the Shared Root File System Approach for Diskless
High-Performance Computing Systems,” in Pro-
ceedings of the 10th LCI International Conference
on High-Performance Clustered Computing (LCI-
09), 2009.

[17] R. Alverson, D. Roweth, and L. Kaplan, “The Gem-
ini System Interconnect,” in 2010 IEEE 18th An-
nual Symposium on High Performance Intercon-
nects (HOTI), Aug. 2010, pp. 83–87.

5

http://www.massopencloud.org
https://aws.amazon.com/elasticmapreduce/
www.ibm.com/software/products/en/ibm-biginsights-for-apache-hadoop
www.ibm.com/software/products/en/ibm-biginsights-for-apache-hadoop
http://wikibon.com/hadoop-nosql-software-and-services-market-forecast-2013-2017
http://wikibon.com/hadoop-nosql-software-and-services-market-forecast-2013-2017
http://www.zdnet.com/article/facebook-virtualisation-does-not-scale/
http://www.zdnet.com/article/facebook-virtualisation-does-not-scale/
http://www.softlayer.com/big-data
http://www.softlayer.com/big-data
http://go.rackspace.com/baremetalbigdata/
http://www.internap.com/bare-metal/
http://www.internap.com/bare-metal/
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://docs.openstack.org/developer/ironic/deploy/user-guide.html
http://maas.ubuntu.com/docs/
http://maas.ubuntu.com/docs/
https://open.bu.edu/handle/2144/11221
https://open.bu.edu/handle/2144/11221


[18] S. M. Strande, P. Cicotti, R. S. Sinkovits, W. S.
Young, R. Wagner, M. Tatineni, E. Hocks,
A. Snavely, and M. Norman, “Gordon: design, per-
formance, and experiences deploying and support-
ing a data intensive supercomputer,” in Proceed-
ings of the 1st Conference of the Extreme Science
and Engineering Discovery Environment: Bridg-
ing from the eXtreme to the campus and beyond.
Chicago, Illinois, USA: ACM, 2012, pp. 1–8.

[19] A. Chandrasekar and G. Gibson, “A comparative
study of baremetal provisioning frameworks,” Par-
allel Data Laboratory, Carnegie Mellon University,
Tech. Rep. CMU-PDL-14-109, 2014.

[20] OpenCrowbar, “The crowbar project,” https://
opencrowbar.github.io, 2015.

[21] Puppetlabs, “Provisioning with razor,” https:
//docs.puppetlabs.com/pe/latest/razor intro.html,
2015.

[22] Cobbler, “Cobbler,” https://cobbler.github.io,
2015.

[23] Google, “Google cloud dataproc,” https:
//cloud.google.com/dataproc/overview, 2015.

[24] Hortonworks, “Hortonworks data platform,” http:
//hortonworks.com/hdp/, 2016.

[25] Cloudera, “Cloudera enterprise,” http:
//www.cloudera.com/products.html, 2016.

[26] MapR, “Mapr converged data platform,”
https://www.mapr.com/products/mapr-converged-
data-platform, 2016.

[27] J. Ekanayake and G. Fox, “High performance paral-
lel computing with clouds and cloud technologies,”
in Cloud Computing. Springer, 2010, pp. 20–38.

6

https://opencrowbar.github.io
https://opencrowbar.github.io
https://docs.puppetlabs.com/pe/latest/razor_intro.html
https://docs.puppetlabs.com/pe/latest/razor_intro.html
https://cobbler.github.io
https://cloud.google.com/dataproc/overview
https://cloud.google.com/dataproc/overview
http://hortonworks.com/hdp/
http://hortonworks.com/hdp/
http://www.cloudera.com/products.html
http://www.cloudera.com/products.html
https://www.mapr.com/products/mapr-converged-data-platform
https://www.mapr.com/products/mapr-converged-data-platform

	Introduction
	The Prototype
	Evaluation
	Related work
	Conclusion

