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Abstract

We propose a new Exokernel-like layer to allow mutually
untrusting physically deployed services to efficiently share
the resources of a data center. We believe that such a layer of-
fers not only efficiency gains, but may also enable new eco-
nomic models, new applications, and new security-sensitive
uses. A prototype (currently in active use) demonstrates that
the proposed layer is viable, and can support a variety of ex-
isting provisioning tools and use cases.

1. Introduction
There is a growing demand for mechanisms to simplify de-
ployment of applications and services on physical systems,
resulting in the development of tools such as OpenStack
Ironic, Canonical MaaS, Emulab, GENI, Foreman, xCat, and
others [10, 12, 22, 53, 55].

Each of these tools hides the low-level hardware features
(IPMI, PXE, boot devices, etc.) from applications and pro-
vides higher-level abstractions such as image deployment,
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Juju charms, Puppet manifests, etc.—much like an operat-
ing system hides disks and address spaces behind file sys-
tems and processes. Different tools are better suited for some
applications than others; e.g. Ironic is used for OpenStack
deployment, while xCAT is well-suited for large High Per-
formance Computing (HPC) deployments.

Each of these tools takes control of the hardware it man-
ages, and each provides very different higher-level abstrac-
tions. A cluster operator must thus decide between, for ex-
ample, Ironic or MaaS for software deployment; and the data
center operator who wants to use multiple tools is forced
to statically partition the data center into silos of hardware.
Moreover, it is unlikely that most data centers will be able to
transition fully to using a new tool; organizations may have
decades of investment in legacy tools, e.g., for deploying
HPC clusters, and will be slow to adopt new tools, leading
to even more hardware silos.

We believe that there is a need for a new fundamen-
tal layer that allows different physical provisioning systems
to share the data center while allowing resources to move
back and forth between them. We describe our design of
such a layer, called the Hardware Isolation Layer (HIL),
which adopts an Exokernel-like [19] approach. With this ap-
proach, rather than providing higher level abstractions that
virtualize the physical resources, the lowest layer only iso-
lates/multiplexes the resources and richer functionality is
provided by systems that run on top of it. With HIL, we
partition physical hardware and connectivity, while enabling
direct access to those resources to the physical provisioning
systems that use them. This approach allows existing provi-
sioning systems, including Ironic, MaaS, and Foreman, to be
adapted with little or no change.
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One major advantage of an Exokernel approach is sim-
plicity. Our current prototype is less than 3,000 lines of code
and is sufficiently functional that we use it in production on
the Massachusetts Open Cloud (MOC)1, in a 576-core clus-
ter. Our current usage of HIL is limited to flexibly allocat-
ing infrastructure for staging efforts and research as needed;
however, the potential value of the HIL approach is much
larger. We envision HIL being used to:

• move resources between multiple production clusters in
a data center, enabling resources to be moved to match
demand, and enabling new models for supporting HPC
applications at Cloud economics,

• enable a marketplace model for data centers [11, 17],
providing the interface between hardware providers and
users of this hardware, who are in turn free to adopt
whichever provisioning tool or software deployment
mechanism that best fits their needs,

• enable application specific provisioning services; imag-
ine, in a general purpose data center, deploying an iso-
lated 1000 node cluster in seconds to solve an interactive
supercomputing problem such as was shown on special-
ized hardware by project Kittyhawk [7],

• enable security-sensitive applications that cannot take ad-
vantage of public cloud for security or compliance rea-
sons (e.g., HIPAA, military, finance) to be deployed in
the middle of a public cloud, and

• enable new scheduling services to move resources be-
tween all the services in a data center based on demand,
economic models, or to meet power regulations [50].

The contributions of this paper are: (1) definition of a data
center isolation layer that enables improved efficiency and
utilization of resources, (2) definition of an architecture for
realizing this layer and demonstration of a prototype imple-
mentation sufficiently functional for production use, (3) an-
alytical and experimental evaluation of the prototype imple-
mentation that demonstrates its performance characteristics
and value for a number of use cases, and (4) discussion of
the change required to different provisioning tools to exploit
this new layer.

Section 2 describes use cases HIL is designed to support;
Section 3 provides a high-level view of the HIL functional-
ity and approach; Section 4 discusses design requirements,
Section 5 describes the technologies used to implement HIL,
and Section 6 discusses the architecture and implementation.
In Section 7 we present measurements of HIL in use, then in
Sections 8, 9, and 10 discuss related work, future directions,
and conclusions.

1 HIL is being developed as part of the Massachusetts Open Cloud (MOC),
a collaboration between the Commonwealth of Massachusetts, research uni-
versities, and an array of industry partners, to create a non-profit Infrastruc-
ture as a Service public cloud [2].

2. Physical provisioning use cases
Although hardware virtualization has been widely success-
ful in the data center, there still remain many applications
and systems which benefit from, or even require, “bare-
metal” hardware.

Cloud/virtualization software: This is one of the most ob-
vious cases, as these systems provide virtualized resources
rather than consuming them. These systems are often enor-
mously complicated to deploy, and come with their own pro-
visioning system (e.g. Mirantis Fuel, Red Hats Open Stack
Platform Director).

Big data platforms: Environments such as Hadoop have tra-
ditionally been deployed on physical resources because of
the impact of virtualization on these workloads [20, 58].
More recently the use of on-demand virtualized deploy-
ments [34] such as Amazon EMR [4] and IBM BigIn-
sights [30] has grown, due to their cost-effectiveness and
convenience for smaller deployments. In search of higher
performance, cloud vendors like IBM [48], Rackspace [44],
and Internap [31] have recently started to provide on-
demand bare-metal big data platforms.

HPC Systems: Many HPC applications achieve signifi-
cantly higher performance on physical rather than virtual-
ized infrastructure. Research institutions typically have large
shared HPC clusters, deployed on statically configured in-
frastructure, and in many cases there is more demand than
there is infrastructure to satisfy that demand. These sytems
could usefully exploit any idle cycles on other data center in-
frastructure if those cycles could be made available to them.

Although efficient, large shared clusters present problems
for highly specialized communities; for example, an infor-
mal survey of two national clusters shows that they support
only about 10% of the tools typically used by the neuro-
science community [26]. Such specialized users would be
better served if they could stand up their own HPC clusters,
perhaps for brief periods of time.

Latency-sensitive applications: For certain applications the
higher variation in latency in a virtualized environment may
lead directly to reduced performance. Examples of this in-
clude tightly-coupled numeric computations [21], as well as
certain cyber-physical and gaming applications. In this case
the use of dedicated hardware allows extreme measures to
be taken such as disabling most sources of interrupts and in-
stalling special-purpose operating systems [47].

Security and compliance: The use of separate hardware may
be required due to regulatory or contractual confidentiality
requirements, or may be useful in providing enhanced secu-
rity for sensitive data.
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Staging and research: Physical hardware may also be re-
quired, typically for brief periods, to enable staging/testing
of services before production deployment, and research that
requires either deterministic results or specialized access to
hardware. Despite heavy fluctuation in demand, these use
cases are typically handled by statically allocating a fixed
set of resources to handle them.

3. HIL overview
HIL is designed to manage server resources in a multi-tenant
data center, providing a fundamental allocation and isola-
tion layer that allows reconfiguration of physical resources
without manual administrative effort. HIL takes a minimal-
ist, “exokernel”-like approach, providing isolation between
allocated pools of un-abstracted physical nodes requiring
only a small amount of code to be trusted to provide the ba-
sic services. Most of the functionality which users depend
on remains in the provisioning tools like Ironic and MaaS.
HIL doesn’t hide functionality; in some cases it abstracts
datacenter-administrative interfaces that can differ between
nodes or switches while preserving the behavior and func-
tionality needed by provisioning tools.

The fundamental operations HIL provides are 1) alloca-
tion of physical nodes, 2) allocation of networks, and 3)
connecting these nodes and networks. In normal use a user
would interact with HIL to allocate nodes into a pool, create
a management network between the nodes, and then connect
this network to a provisioning tool such as Ironic or MaaS.
As we will discuss, many tools can be used unmodified while
others require only modest modifications. As demand grows,
the user can allocate additional nodes from the free pool;
when demand shrinks, they may be released for other use.

In addition to the HIL core services, we have developed
a number of optional services that can be deployed for use
cases that require them. Examples include 1) a virtual pri-
vate network (VPN) service to allow users to connect to
HIL-managed networks, 2) node control services, allowing
users to safely use out-of-band management interfaces for
tasks such as power-cycling nodes and selecting boot de-
vices, and 3) an inventory service for tracking characteristics
of resources that may be allocated.

A large data center may contain multiple server pools,
clusters, and compute services managed by different com-
panies, institutions, or research groups. For example, the
MGHPCC2 data center hosts multiple single-institution re-
search computing clusters, shared HPC clusters, shared IaaS
and PaaS Cloud environments, and other specialized com-
pute and storage environments stood up by various research

2 www.mghpcc.org, the Massachusetts Green High-Performance Comput-
ing Center, a modern 19-MW data center build by a consortium of MIT,
Harvard. Boston University, Northeastern, UMass. This data center houses
hundreds of thousands of CPU cores, 10s of petabytes of storage, and pro-
vides production services to a user base of over 10,000 researchers working
in a wide range of research areas from neuroimaging to physics to digital
humanities.

Figure 1. HIL provides strong network-based isolation be-
tween flexibly-allocated pools of hardware resources, en-
abling normally incompatible provisioning engines (e.g.
Ironic, MaaS, xCAT) to manage nodes in a data center.

groups. Today each of these environments exists in a sepa-
rate “silo” of physical infrastructure.

HIL can be used in such an environment to break these
siloes to allow infrastructure to be moved to wherever it is
needed. In such a data center there would be multiple HIL
service instances, one per server pool or administrative en-
tity. For example, in our current environment, in addition to
the production HIL deployment at Northeastern3 we have
additional (experimental) HIL deployments at MIT and BU.
Services like the MOC or compute clusters shared by mul-
tiple institutions can span these HIL instances, as shown in
Figure 1. While some configuration and networking is re-
quired, little or no changes are needed to the underlying
provisioning services (e.g. Ironic, xCAT in the illustration)
which interact directly with the allocated hardware.

4. Requirements
If HIL is to be a fundamental layer in the data center, it must
support both:

1. large long-lived production services (e.g., Clouds, shared
HPC clusters, shared Big Data clusters) where HIL can
be used to move resources between the different produc-
tion environments as demand grows and shrinks. For ex-
ample, in the MGHPCC we intend to grow and shrink
the MOC IaaS environment depending on demand, and
use any resources made available when demand is low to
augment the HPC clusters in the data center.

2. short-term on-demand deployment of clusters (both small
and large) for e.g. research, staging, on-demand Big Data
platforms, etc., where HIL can be used to provision phys-
ical machines almost as simply as IaaS services may be
used to provision virtual ones.

These require the following:

3 or, rather, Northeastern’s space at the MGHPCC

157

www.mghpcc.org


Control: Users should have full control over physical ma-
chines, including all the capabilities they use to debug an
installation when there is a failure. This includes installing
their own operating system, accessing a machine’s console,
power cycling the machine, and controlling the boot device.

Security: User security should be similar to that with user-
purchased hardware. Users must be protected, or have the
capability of protecting themselves from: 1) other concurrent
users, 2) previous users using the same infrastructure, and 3)
to the extent possible, the provider of the HIL service itself.

Interconnectability: A user should be able to federate nodes
acquired from multiple HIL deployments. At the same time,
the administrators of each HIL deployment should be able
to address issues such as hardware failures and upgrades
or firmware updates without coordination with other HIL
operators.

Software provisioning: Users should be able to provide their
own software provisioning services. Many large (e.g. insti-
tutional) users may have extensive investments in their in-
house provisioning systems, as well as strong dependencies
on those systems. Researchers may have need of services
like Emulab or GENIE. Developers (in particular, the MOC
development team) may need to use third-party installation
mechanisms like Mirantis’ Fuel [38] (for installing Open-
Stack) or OpenStack Ironic [53]

Compatibility: Users should be able to use existing software
(OSes, schedulers, identity systems, and provisioning sys-
tems) within HIL with little or no effort. In addition, node
and network configurations deployed without HIL should be
able to be easily brought under HIL control. It would, as an
example, be a major barrier to HIL adoption in the MGH-
PCC if one of the member institutions needed to bring down
its entire production HPC cluster in order to incorporate it
into a HIL environment.

Simplicity: Simple self-service use cases should be ad-
dressed simply. While IT departments may use sophisticated
tools to create complex platforms, self-service by small-
scale users will require a simple user experience.

5. Enabling technologies
In order to implement HIL and achieve these requirements,
the key technologies used are:

IPMI: The Intelligent Platform Management Interface (IPMI)
[16] allows remote management and monitoring of a node
independent of a running OS. It allows users to power-cycle
a node, select a boot device, and access a node’s serial con-
sole.

Although important for remote management, IPMI re-
quires isolation due to a number of security issues, in-
cluding known default credentials and authentication weak-
nesses [15]. At present IPMI is typically accessed over a
separate network interface, via a network accessible only to
trusted administrators.

Because of these weaknesses, while HIL uses IPMI func-
tionality itself and provides a subset of that functionality to
its users through its API, it must prevent direct IPMI access
in order to prevent malicious users from compromising sys-
tems.

PXE: The Preboot eXecution Environment (PXE) allows
an OS to be loaded and booted over the network, using
the Dynamic Host Configuration (DHCP) and Trivial File
Transfer (TFTP) protocols, and is supported on virtually all
computer systems with a network interface.

The DHCP protocol uses a client broadcast to request
configuration information (e.g. IP address, default gateway,
DNS server) from a configuration server; additional infor-
mation may specify a boot file to be downloaded from a
specified server via TFTP and executed. The lack of authen-
tication in either protocol, as well as the use of broadcast in
DHCP, allows malicious nodes to spoof server responses and
even force nodes to boot into a malicious OS.

Because of these risks, only trusted users may be allowed
to gain direct physical access to the provisioning network.
In typical compute clusters this is done via OS security,
by ensuring only trusted administrators have access to the
privileges (root) needed for physical network access. For
HIL, however, network mechanisms must be used to isolate
the provisioning networks used for different tenants.

VLAN: Virtual LANs allow multiple virtual layer 2 net-
works to be created over a single switching infrastructure.
Packets are tagged with a 12-bit VLAN ID, and switch rules
are used to restrict a particular VLAN ID to a certain sub-
set (i.e. set of ports) of the infrastructure. Other more flex-
ible mechanisms (e.g. the UDP-based VXLAN protocol)
are becoming available, however at present typically only
VLAN support can be guaranteed across a large heteroge-
neous infrastructure. HIL depends on the isolation provided
by VLAN support; however as discussed in Section 9, for
scalability HIL will in the longer term need to take advan-
tage of newer protocols.

6. HIL Architecture
The HIL architecture is shown in Figure 2. It provides a
REST API, and is implemented by components linked via
REST APIs or programmatic interfaces. These components
can be categorized as:

• core HIL components,
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Figure 2. Components in a HIL deployment.

Table 1. Objects defined in HIL
Object name Description Of Object

Project Logical entity that can be assigned a set of user
reconfigurable resources.

User User of a HIL project.
Network Medium by which nodes communicate within and

across projects; is qualified by a type such as
Ethernet.

Node Physical, user-controlled server assigned to a
project.

NIC Compute Node’s physical connection that can
then be assigned to a network.

Switch Physical entity to which NICs are connected and
which can serve Networks.

HIL Service Service providing the HIL REST API atop one or
more physical or virtual server instances
containing the state of the system. Carries out
privileged isolation operations that partition
resources.

• system drivers: pluggable implementations of a stan-
dard interface to a specific external system (e.g. network
switch control),

• optional services: HIL-related services which can be
overridden on a per-allocation basis.

We begin our description of the architecture with an overview
of the API, followed by a description of the individual com-
ponents.

6.1 HIL API
The key objects in the HIL API are shown in Table 1. The
basic container for resources in HIL is the project, which is
managed by a set of users. Projects contain nodes and net-
works: nodes represent compute nodes, and are atomically
allocated by assignment to a project; each node has a set of
NICs which may be connected to networks.

Networks can either be private to a single project—e.g.
used for the purpose of isolating management access–or

public and accessible by all projects, as in the case of ex-
ternal internet access.

Operations that an end-user can perform are:

• create new projects and delete empty projects,
• create/delete networks in a project, and import public

networks into a project,
• allocate/release nodes to and from projects,
• connect NICs to / disconnect NICs from networks,
• node management: power cycling and serial console ac-

cess, and
• queries such as listing free nodes, nodes and networks

assigned to a project, or node and network details.

Administrators may additionally manage topology and the
authentication and authorization of HIL by creating or delet-
ing users, adding users to projects, creating public networks,
registering or removing nodes, NICs and switch ports, and
connecting NICs to switch ports.

6.2 Core Components and Drivers
The core components are those which are used in all projects,
and may not be overridden by user-provided functionality:
these are (a) the HIL server itself, implementing the HIL
API, (b) the database, which persists HIL state and con-
figuration, and (c) the operation engine, which sequences
potentially long-running network operations.

HIL Server: this implements most of the HIL logic and
exposes HIL’s REST API, interfacing with the database, the
operation engine, and the out-of-band management (OBM)
drivers. The primary aspects of its logic are:

• authentication and authorization of requests, applying
controls based on identity, object ownership, and config-
ured state (e.g. permissions, quotas),

• node control operations, which are executed via an ap-
propriate OBM driver, and

• network configuration actions, which are forwarded to
the operation engine via an in-database request queue.

Most requests take effect on the database and complete im-
mediately; longer-running requests return a pending status
and the API client is responsible for polling for completion.

OBM and Auth drivers: The HIL server controls individ-
ual bare-metal nodes via the OBM driver, which provides
functions to power cycle a node, force network booting, and
access the serial console log. The OBM driver exports these
functions over a programmatic interface, and is implemented
using IPMI with vendor-specific extensions as necessary.
[c.f. § 4, control] Authentication and authorization decisions
are forwarded to the auth driver; authorization is performed
by passing a request description and receiving in response a
decision (allow/deny) and optionally an authorization token
which may be forwarded to other services for delegation of
authorization. Currently two authentication drivers are avail-
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able: one uses simple database tables, while the other for-
wards requests to OpenStack Keystone [42], providing ac-
cess to multiple authentication backends as well as token-
based delegation of authorization.

Operation Engine: This is responsible for sequencing and
coordinating operations which change network configura-
tion. It receives requests from the API server via a queue,
performs them in the order they were submitted and fi-
nally updates the database upon completion. In this way the
database always represents the state after the most recent
successful operation, simplifying the task of determining the
legality of incoming requests and preventing failures from
introducing undefined states. While an operation is pend-
ing against a NIC, HIL prevents certain operations (like the
free’ing of nodes or making new requests against the same
NIC) which could compromise a network’s isolation. In this
way, the Operation Engine is a mitigation against degener-
ate scenarios where a user could briefly access the network
of a previous or future user caused by certain race or failure
conditions.

Serializing all network operations in this way may present
a scalability challenge in the future. When or if that becomes
an issue, we expect that introducing even rudimentary de-
pendency analysis into the Operation Engine, for example
only serializing requests with respect to a particular project,
will allow HIL to scale by servicing requests in parallel.

Switch drivers: These are used by the operation engine to
implement the functions which manipulate network connec-
tivity, with implementation (but not interface) varying by the
network technology being used (e.g. VLAN), as well as ven-
dor and model of the device being controlled. By manip-
ulating network connectivity HIL is able to protect nodes
within a project (or their management interfaces) against ac-
cess from other projects or external systems [§ 4 security]
while allowing explicit connection to external network ser-
vices [§ 4 provisioning] or even other HIL deployments [§ 4
Interconnectability].

6.3 HIL Optional Components
The remaining components of a HIL deployment are op-
tional on a project-by-project basis. The full set of features
is in fact quite similar to that of Emulab or GENI; however
by taking the modest step of allowing users to forgo services
such as software provisioning, the range of compatible appli-
cations is vastly increased [§ 4 compatibility], in turn greatly
increasing the utility of the cluster being managed.

Node access (headnode) services: In the simplest self-
service usage, a user allocates a set of nodes and then de-
ploys an operating system and applications of the user’s
choice on those systems. [§ 4 simplicity, provisioning] Core
HIL functions may be used for allocation, establishing exter-
nal connectivity, and rebooting, but a network boot server is

needed for actual software deployment. The headnode ser-
vice allocates a virtual machine connected to project-private
networks, external user access via a pre-configured SSH key
pair, and a pre-configured boot server to which the user may
upload images.

In other cases it may be desirable to bypass the headnode
provisioning service to a greater or lesser extent. [§4 com-
patibility] As one example, some distributed software ap-
plications (e.g. Mirantis Fuel [38], Red Hat Foreman [28])
base their installation mechanism on a pre-packaged net-
work boot server; in this case the headnode service may be
used to install this first node, which then deploys software to
the remainder of the allocated nodes. In another case an in-
stitution may have a pre-existing software provisioning sys-
tem; here core HIL functions may be used to connect the
allocated nodes to this system4.

Schedulers: Core HIL provides mechanisms for allocating,
isolating, and connecting nodes; it does not prescribe policy,
even to the extent of e.g. selecting which nodes to allocate.
For small deployments this functionality may be sufficient,
especially in combination with careful use of node naming.
In more complex installations, however, users may need to
to allocate nodes from specific pools, or for certain periods
of time make reservations for the future. Cluster schedulers
such as SLURM [56] or GridEngine [25] are typically used
for this purpose in existing large installations, and could be
readily adapted to provide these features on top of HIL.

VPN service: HIL provides a shared VPN service which may
be used to connect project-private networks to external pro-
visioning services [§ 4 compatibility], to establish connec-
tivity between project networks on different HIL deploy-
ments [§ 4 interconnectability], or to connect to networks
outside of a HIL deployment. Providing VPN as an optional
HIL service not only simplifies interoperability by making
use of a preconfigured VPN template, but may enable effi-
ciencies due to sharing of resources, particularly if special-
ized resources such as hardware VPN accelerators (e.g. Ju-
niper [40]) are available.

Node metadata / inventory service: While HIL maintains a
list of available nodes and small amounts of configuration in-
formation in its database, it does not provide any description
of the capabilities of those nodes (e.g., cores, memory, ac-
celerators, network bandwidth) or administrative attributes
such as ownership. Some of this information may be config-
ured into a scheduler (e.g. in definitions of different pools
of resources and their characteristics); the remainder is ex-
pected to be addressed by a separate inventory service. Such
service could be something as simple as a wiki or more com-
prehensive like Clusto [14].

4 Researchers working on improved software deployment mechanisms will
no doubt wish to override the default service, as well.
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6.4 HIL Administrative Services
The final HIL components are services provided to the ad-
ministrators of a HIL deployment, rather than the users.

Node Monitoring: Detecting and managing failures is a sig-
nificant concern in any large hardware installation, and there
are a number of systems and approaches adopted by orga-
nizations managing such installations today. As an exam-
ple, organizations participating in the MOC and deploying
HIL to date make use of a variety of node monitoring sys-
tems, which in many cases rely heavily on IPMI access to
detect node failures, memory errors, disk failures, and other
adverse events. In order to allow continued use of such sys-
tems [§ 4 compatibility] HIL allows administrators to con-
figure external access to IPMI for these existing monitoring
systems.

Billing and Metering: Some environments in which HIL
would be deployed will have existing mechanisms for me-
tering and billing, whether providing full billing and charge-
back or “showback”, for instance usage reports which may
be used for accounting or just for verification of equitable
usage. HIL provides access to log records detailing resource
allocation over time, allowing it to support existing billing
mechanisms [§ 4 compatibility]5.

6.5 Other Requirements
The two remaining requirements from Section 4 are Security
and Interoperability.

Interoperability: Rather than implementing a mechanism to
support interconnectivity between deployments, HIL again
takes a minimal approach. For simple use cases, a VPN-as-
a-service mechanism allows users to join projects in sep-
arate HIL instances. In more complex cases users of HIL
may deploy their own (possibly hardware-assisted) network-
ing technologies [57] and services to interconnect projects
across different instances of HIL. As an example, we are de-
veloping modifications to OpenStack to create and control
overlays between projects.

Security: Tenants of a HIL service must be protected, or have
the capability of protecting themselves, from concurrent ten-
ants using disjoint resources as well as previous or future
tenants of the same resources. In addition, when possible it
is desirable to protect the tenant from the operator of the HIL
infrastructure as well.

HIL performs strict network isolation of users’ networks,
in particular guarding networks used for DHCP and net-
work boot services, to prevent spoofing and other attacks.
In addition insecure services needed by tenants—IPMI, in

5 Alternately other software packages accepting call detail records may be
adapted for this use.

Table 2. Production HIL statistics.
Operations Total
Create project 1973
Delete project 1960
Allocate node 3194
Free node 3145
Allocate network 1972
Free network 1958
Connect NIC 3505
Detach NIC 3441
Total operating time 13 months

particular—are proxied to prevent their use by malicious
users in attacks on other tenants.

An additional aspect of security in a bare-metal environ-
ment is the possibility of attacks by users of the same hard-
ware but separated in time. Previous users may attempt to
change system or peripheral firmware, compromising future
users; protection from this relies on hardware support to pro-
tect against unauthorized updates or a design that reduces
or eliminates location of processor-accessible firmware (e.g.
like AMD Seamicro or possibly HP MoonShot [39]). Sen-
sitive information may be left resident in DRAM or on disk
when the system is released to another user [27]; protection
against this risk requires scrubbing RAM and use of disk en-
cryption (either host- or disk-resident) to allow discard of
on-disk data.

In contrast to virtualized approaches, HIL provides some
degree of protection from the administrator, as all software
on the node is owned and installed by the tenant. With the
use of a user-specified provisioning system it provides more
protection than Emulab or OpenStack Ironic, both of which
place the entire software provisioning stack under provider
control.

7. Evaluation and Experience
We have developed an initial prototype of the HIL archi-
tecture described in the previous section. The prototype is
very simple, with less than 3,000 lines of code in the core
functionality Even though this is a proof of concept imple-
mentation, the functionality offered makes operations man-
agement so much easier that the prototype is already being
used in production on a daily basis in a cluster of 48 Cisco
UCS C220 M3 nodes, each with one 10 Gb NIC, dual 6-core
CPUs with hyper-threading enabled, 128 GB of RAM, and
one or two disks. A portion of the MOC’s production Open
Stack cloud is stood up on this cluster, and all experiments
described in this section were obtained by using this HIL
prototype. Table 2 presents the production HIL usage statis-
tics we observed on this cluster during the last 13 months.

In the remainder of this section we report on experience
gained in using HIL to deploy a variety of applications, and
describe a model showing the economic value of shifting
hardware resources between different services.
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Table 3. Median and standard deviation times for key oper-
ations in HIL in seconds. Each operation was repeated 250
times.

Operation Median (secs) Standard Deviation
Create project 0.011 0.002
Delete project 0.017 0.003
Allocate node 0.011 0.003
Free node 0.098 0.008
Allocate network 0.017 0.004
Free network 0.016 0.004
Connect NIC 4.336 0.079
Detach NIC 2.301 0.14
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Figure 3. Scalability of HIL synchronous operations

7.1 Metrics and Scaling
The runtime of key HIL operations is shown in Table 3. For
database-only operations that do not interact with the switch
(i.e. allocating or freeing a project, node or network), com-
pletion time is in the tens of milliseconds. Interacting with
the switch consists of two components: the time to complete
and reply to each request—600-700 ms—and the time (sev-
eral seconds) needed for the operation engine to establish a
control session to the switch and send commands, although
multiple commands may be sent over a single control con-
nection, amortizing this overhead to some degree.

Figure 3 shows the performance of synchronous HIL API
operations as we scale the number of concurrent clients from
1 to 16, while making requests in a tight loop. As expected,
operations that primarily make use of the DB, like allocating
or deallocating a project, node or network, complete in less
than a tenth of second even with 16 concurrent clients. Free-
ing a node takes about 5x the time of the other allocation-
related operations and degrades more rapidly with increased
concurrency because of a call out to ipmitool to ensure that
any consoles connected to the node are released before it is
de-allocated.

Figure 4 shows the performance of asynchronous API op-
erations. These operations involve interactions with the net-
working switches and as a result take an order of magni-
tude longer to complete. In this graph, performance degrades
further with more concurrent requests because all requests
target the same networking switch which becomes a bottle-
neck. As the number of switches scale in a larger environ-
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Figure 4. Scalability of HIL asynchronous operations

Table 4. Power On Self Test median times and standard
deviation on various platforms, optimized and unoptimized,
10 repetitions.

System Unoptimized Optimized
Median (sec) Std. Median (sec) Std.

Lenovo M83 14.5 1.080 – –
Dell R620 108.0 0.675 97.0 0.632

Cisco C220 M3 122.0 1.450 78.0 0.850

ment (with some optimization of HIL) concurrency should
also improve.

In actual usage, each node allocated is typically rebooted
at least once, for software provisioning, before it may be
used; the time for this boot process is significantly longer
than that of any HIL operations. On server-class machines
the hardware Power On Self-Test (POST) process may take
minutes in hardware discovery, initialization, and verifica-
tion, along with repeated user prompts and timeouts. In Ta-
ble 4 we see POST timings for three different systems, each
in its default (unoptimized) configuration and with all op-
tional POST features disabled (optimized). POST time for
the desktop system measured was much lower but the two
server-class systems each required about 1.5 minutes to boot
in the best case, and over two minutes in the worst.

To estimate the maximum size of a single HIL deploy-
ment, we assume:

• average node lease time Tup is 3100 secs, based on me-
dian virtual machine lifespan measured from logs of an
academic OpenStack cluster,

• each node requires one network operation for allocation
and one for deallocation, ignoring additional (and much
faster) HIL operations,

• network control connection overhead is amortized over
sufficiently large numbers of operations; subtracting this
overhead we have a per-operation cost of 0.7 secs, or a
total cost Tnet ops of 1.4 secs for two operations, and

• POST time Tpost is 80 secs.

Given N nodes, the total utilization of the HIL server is

ρ =
N · Tnet ops

Tnet ops + Tup + Tpost
(1)
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Figure 5. Performance of bare metal and virtualized
Hadoop environments running on top of HIL carved deploy-
ments.

Based on this result, a single HIL instance would be able
to handle over 1700 nodes with ρ < 0.75. In the worst-case
scenario of simultaneous allocation or deallocation of large
numbers of nodes, HIL would be able to handle N =

Tpost

0.7
or 117 allocations or deallocations before the worst-case
operation time exceeded the node POST time.

These estimates are based on measurements of the current
very simple HIL implementation that uses low performance
Expect6 scripts to interact with the switch. While we could
improve this performance dramatically, the existing imple-
mentation is more than sufficient for the scale of individual
PODs in our data center, and we have little incentive to im-
prove the performance or scalability of this part of the im-
plementation.

7.2 HIL as a bare metal service
To demonstrate the use of HIL as a bare-metal service, we
used it to allocate a complete, isolated BigData environment.
Steps included: 1) allocating 8 nodes through HIL, 2) using
Foreman to provision them with Red Hat Enterprise Linux
7.1, 3) deploying a bare-metal Big Data processing environ-
ment using Apache BigTop [23], and 4) testing the perfor-
mance of this environment using the basic Sort application
within the CloudRank-D benchmark [36]. We compare this
performance with the virtualized case by running the same
experiment on the MOC’s OpenStack (Kilo) cloud running
on (idle) nodes in the same cluster.

In Fig. 5, we display the performance of the bare-metal
and virtualized Big Data environments we tested7. The tests
performed in here are the standard random write and sort
benchmarks that come with Hadoop. Note that our goal
in here is not to provide a thorough comparison of bare-
metal and virtualized Big Data environments but rather to
showcase that HIL can easily support environments such as
cloud management and Big Data systems. To approximate
an apples-to-apples comparison, we ran the virtual Hadoop
environment with one VM per node, where each VM was

6 expect.sourceforge.net
7 Reported results are average of 5 runs.

provided 90% of the available resources of its host8. As seen
in Fig. 5, bare metal outperforms the virtualized version in
terms of performance, possibly due to overheads associated
with virtualization.

7.3 HIL as a provisioning service enabler
As discussed earlier, there is a growing interest in bare-
metal provisioning systems. However, existing bare-metal
solutions can introduce long provisioning delays while in-
stalling and configuring the OS and applications to local
disks. This has motivated recent research developing sophis-
ticated mechanisms to optimize provisioning large clusters
using technologies not currently in the mainstream offerings,
such as de-virtualization [41], broadcast/multicast [6] or bit-
torrent [24].

We believe that the HIL model is ideal for enabling, test-
ing and deploying these novel models. We recently had suc-
cess using HIL to develop a novel network-mounting-based
on-demand bare-metal big data provisioning system [51].
Our approach fast-provisions a big data cluster by booting
servers from an iSCSI boot drive containing the OS and ap-
plications and uses the local drives for application data, en-
abling a BigData cluster to be allocated and ready within 5
minutes. This service compliments the HIL model by allow-
ing nodes to be allocated and ready to use in short time.

7.4 Experience with HIL
We have deployed HIL on the 48-node cluster described
at the beginning of this section, where it is being used on
a daily basis. We have been successful in integrating it
with several applications with small or no modifications.
We present our experiences here.

Foreman: This is a system for provisioning, configuring,
and monitoring servers, used by Red Hat for their supported
configurations, and by our team on a daily basis. Foreman is
easily installed on the headnode VM in a project, and then
may be used to manage the allocated nodes in the same way
as in non-HIL installations.

Canonical Metal As A Service (MaaS): This is a system
for elastically provisioning bare-metal resources; it provides
provisioning but not (to date) isolation. The initial non-HIL
deployment of MaaS had a steep learning curve, requiring
two weeks of work by a junior team member. After this, the
same person needed 30 minutes to configure access to this
external provisioning service for new HIL allocations.

OpenStack: To date this has been the primary production use
of nodes allocated using HIL. By using HIL we are able to
easily create multiple non-interfering OpenStack clouds for
development, testing and staging, while provisioning them

8 Remaining resources were reserved for Hypervisors.
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using existing mechanisms (e.g. Foreman, Fuel) which are
supported by external partners.

Ironic: is an OpenStack project that allows bare metal nodes
to be deployed using the same OpenStack API used for
managing VMs. It requires access to a power-control API
like IPMI in order to perform common operations like power
on and reset. To integrate this, a simple driver was written
which passes power operations to the HIL API as well as
another driver to enable OpenStack’s networking component
to recognize a HIL network.

ATLAS: is a collaborative research initiative in physics with
a heavy HPC component[1]. As part of a successful proof of
concept, we explored with the ATLAS personnel at Boston
University (BU) the potential for transitioning idle nodes in
our HIL cluster into the “Tier 2” HPC grid. This was accom-
plished using a VPN to bridge BU’s custom HPC provision-
ing and management to a privately allocated network.

7.5 Integration into an existing scheduler environment
HIL does not perform scheduling, i.e. selection of which
nodes should be allocated to a particular request. The
SLURM scheduler, widely used in HPC clusters, provides a
rich variety of mechanisms and policies for allocating sys-
tems in response to user requests. Here we present a design
for integrating HIL into SLURM, allowing existing (and
well-understood) policies to be used for selecting nodes to
be allocated.

This integration is based on SLURM resource reservation
requests, which allow users to request resources as varying
as compute nodes and licenses, allocating some quantity of
resource for a period of time. A special namespace is defined
for HIL requests, allowing HIL-specific rules and triggers to
be defined. On receipt of a request, SLURM first allocates
the specified number of nodes from the pool available for
bare-metal allocation, and then executes a reservation start
trigger which requests allocation and isolation of these nodes
by HIL. On expiration of the reservation, a reservation end
trigger returns the HIL allocation, returning their network
configuration to the default state.

To illustrate the integration of HIL into a production
SLURM environment we describe two projects where we
are actively integrating HIL and SLURM.

7.5.1 Supporting a big-data systems experiment
In this example custom resource provisioning is used to
support a database systems project that is experimenting
heterogeneous database paradigms to support diverse data
sources [18, 49]. The project is exploring the heterogeneous
big-data paradigms in health-care [46] and uses an MIT
Lincoln Laboratory developed software environment [45] as
its core platform for deploying high-performance scalable
data analytics tools. The platform used requires full control

of the software stack and system operations for the duration
of the experiment.

To support this work a SLURM resource reservation is re-
quested with a name in the HIL namespace. The start of this
reservation triggers a HIL request for the allocated nodes,
providing isolation for the nodes’ provisioning network. Af-
ter the resource reservation expires, a cleanup event triggers
HIL actions to restore nodes to their base network connectiv-
ity, as well as launching steps to restore nodes to their base
SLURM state.

7.5.2 Supporting bursty Windows-based applications
within a SLURM cluster

In this example end users of our SLURM cluster have work-
flows that involve a high-throughput cell image processing
[35] that is tightly integrated into a Windows environment.
The processing is part of a pipeline that integrates with other
cluster resources and executes on a regular schedule. We
can use HIL isolation again triggered from specially named
SLURM resource reservations. In this case reservations are
scheduled for particular time windows that align with as-
sociated physical experiment pipeline needs. Following this
approach provides dynamic flexibility under user control to
isolate and reconfigure parts of the SLURM based system,
depending on experiment schedules and scale.

7.6 An economical incentive analysis
We consider the use of HIL by a hypothetical data center
operator, allowing resources to be shifted between multiple
uses. Consider a datacenter serving Amazon’s Elastic Com-
puting Cloud (EC2) service, where excess computing power
not rented as on-demand instances is made available for spot
purchasing. Using HIL, it is possible to elastically divide the
set of nodes in the datacenter such that some portion of this
excess is rented to users with Real-Time applications (in par-
ticular game server usage) or HPC workloads.

Massively multi-player online games (MMOGs) are gen-
erally served over dedicated distributed server farms [37],
as they have very dynamic usage patterns and highly spe-
cialized software. Similarly, many HPC libraries and appli-
cations are designed to work closely with the hardware, re-
quiring specific OS drivers and hardware support. Although
HPC cloud offerings are available, they are based on dedi-
cated HPC-specific clusters.

With HIL it is possible to dynamically adjust physical
nodes between virtualized and non-virtualized services ac-
cording to demand. We very conservatively estimate the
overhead associated with moving a server (e.g. from an HPC
allocation to a cloud allocation) as one hour, primarily due
to the need for restart and software re-provisioning.

In Figure 6, we provide the number of EC2 c4.xlarge
servers that we estimated to be required to serve the real-time
workload described by a set of game server logs (MineCraft,
Sep. 19-25, 2011 [32]) and an HPC workload (Sun Grid En-
gine logs from TU Delft ASCI, Feb. 22-29, 2005 [9]) for
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Figure 6. # of c4.xlarge instance equivalents required by
sample Real-Time and HPC workloads for one week.

one week. Each point in the circle-ended green line and the
triangle-ended purple line indicates the number of c4.xlarge
instances required for serving the online game MineCraft
and the Sun Grid Engine HPC load in the respective hour.
The estimated c4.xlarge instance counts are computed by di-
rectly taking the active MineCraft server counts, and divid-
ing the HPC CPU demands by four, as c4.xlarge instances
have four Amazon vCPUs, which are roughly equivalent to
four hyperthreading cores.

In Figure 7, we try to depict the weekly profit an AWS-
like vendor can make assuming that it has 5000 linux,
c4.xlarge EC2 instances that it cannot rent on-demand and
has to rent via the spot market. We assume that these in-
stances are served over 5000 physical nodes. The triangle-
ended purple line indicates the hourly profit that this vendor
can make by renting all of these extra 5000 instances over the
spot market. The spot market prices used for the c4.xlarge
instances in this figure are obtained from Amazon for July
13-20, 2015.

The straight green line indicates the hourly profit that this
vendor can make if all the nodes are rented in the spot mar-
ket. The triangle-ended blue line indicates the hourly profit
that this vendor can make if some portion of the nodes are
rented as bare-metal nodes to the HPC workload depicted in
Figure 6 and the remaining nodes are virtualized and rented
in the spot market. The hourly price of an HPC instance is
taken from reported AWS HPC on-demand costs. The circle-
ended red line indicates the hourly profit that this vendor can
make if some portion of the nodes are rented as bare-metal
nodes to the Real-Time workload depicted in Figure 6 and
the remaining nodes are again virtualized and rented in the
spot market. For the Real-Time workload, we assume that
the hourly cost of a node is the bare-metal renting price of a
3.4 GHz Xeon E3-1270 server with 8GB of RAM from IBM
SoftLayer.

As seen in Figure 7, mixing Real-Time or HPC services
along with virtualized services provides higher profits for the
cloud provider, even with the overhead caused by switching
state. e.g., in this example, ∼30% more profit is obtained by
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Figure 7. Weekly profit from a system that can host 5000
linux, c4.xlarge EC2 instances located in US-East-1a.

the HPC + Spot combination and ∼50% more profit is ob-
tained by the Real-Time + Spot combination, compared to a
pure Spot case. We should note that due to high variability
of the server demands of HPC workloads, the HPC profits
suffer from the provisioning overhead. This shows that the
ability provided by HIL that lets us mix virtualized work-
loads with bare-metal workloads is invaluable.

8. Related work
The Hardware Isolation Layer model brings the philoso-
phy of resource isolation without abstraction to the data
center. Exokernel first applied this idea to segmenting the
resources of a single machine; enabling highly customiz-
able per-application library OSes and demonstrated perfor-
mance advantages for specific applications [19]. Applying
this model to the data center is simpler; placing nodes on
isolated networks is easier than developing models to par-
tition memory, compute and storage. HIL similarly enables
specialized per-application provisioning systems.

NoHype [33] also partitions the physical resources of a
machine, but exploits virtualization hardware support to run
any operating system. The fundamental goal is to avoid se-
curity issues associated with increasingly complex hyper-
visors. HIL, similarely, is very simple, with a very small
trusted computing base. NoHype like solutions may be at-
tractive in a HIL environment in environments without suf-
ficient hardware support to protect firmware from malicious
guests, see 6.5.

The value of self-service access to physical infrastructure
has been recognized for a long time, and there are a large
number of production and research systems that have been
developed [5, 6, 8, 10, 12, 13, 22, 24, 41, 43, 53, 55]. The
sheer diversity of these projects suggest that it is unlikely
that any one system will solve all use cases, and there is
value in a HIL-like layer to alow these services to co-exist in
the data center and to allow new services and new research
in provisioning systems.

A previous system that provides a very similar level of
abstraction to HIL is Project Kittyhawk [7], which inspired
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the design of HIL. HIL differs from Kittyhawk in that Kit-
tyhawk was designed around the capabilities of IBM’s Blue
Gene. In addition, HIL allows existing provisioning systems
to be used unmodified, while Kittyhawk required users de-
ploying a provisioning system to modify it to support Kitty-
hawk’s abstractions.

9. Future Work
HIL is an evolving platform, and a number of important
enhancements are under development or in design at present.

HIL provides network isolation via 802.1Q VLANs;
however the limited VLAN namespace will pose problems
at full data-center scale. Isolation based on the VXLAN pro-
tocol will provide a much larger namespace, with no change
to the existing switch driver model. More scalable alterna-
tives such as Layer 3 isolation and SDN-based flow-level
isolation via a custom switch controller are under investiga-
tion.

In Table 4 we see that pre-OS node boot times vary
greatly, taking over two minutes for some platforms; since
provisioning nodes may require multiple reboot cycles, mov-
ing resources between projects may incur high costs on
such systems. Work is underway on a fast provisioning sys-
tem, where nodes boot from (and shut down to) a minimal
boot-loader environment optimized for fast network boot-
ing [52, 54].

Although HIL is currently in use by our own team, for
it to succeed it must be broadly deployed across a variety
of use cases. It is challenging to convince administrators
of heavily used production services to deploy HIL. We are
currently in two proof-of-concept collaborations with other
teams in the MGHPCC: ATLAS, where we are using idle
HIL nodes to augment their HPC cluster on-demand. The
second is an incremental deployment of HIL in a subset of
the Engaging-1 [29] cluster, allowing resources to be moved
on demand between the HPC cluster and the MOC.

Security in systems managed by HIL is in part depen-
dent on node security: if malicious users are able to com-
promise systems at a low (i.e. firmware) level, this may be
leveraged into attacks on any future users of the same re-
sources. Although progress has been made in some hardware
areas (e.g. disk firmware [3]), features such as local IPMI
access common on commodity servers continue to present
risks. We have just started a project with the USAF, MIT
LL and TwoSigma to (1) extend HIL to meet federal secu-
rity, isolation, and other compliance requirements, and (2)
deploy it in the MOC with hardware that meets these same
requirements. This infrastructure would be available for fed-
eral, state, and municipal agencies when needed and other-
wise would be made available to industry segments having
these same security needs.

Another HIL-related project is developing a Mesos-like
scheduler to move resources between services using HIL
to increase utilization. It is based on a distributed model

where each service is responsible for determining its load
and resources requirements; work to date has demonstrated
significant increases in efficiency.

Finally, we are developing an architecture for enabling
multiple networking providers to offer differentiated ser-
vices between HIL-controlled PODs [57], where providers
may differ in bandwidth, latency, SLA, price, security, and
other attributes. In this model, users can determine which
flows will use which networking provider, allowing choice
of hardware resources in not only compute nodes but in the
intra-data center network as well.

10. Conclusions
In this paper we have introduced HIL as a fundamental iso-
lation layer for the data center. HIL is designed to be a
layer under different hardware and virtual provisioning sys-
tems, enabling strong isolation between the different ser-
vices while reducing the burden of deploying new services
and enabling resources to be moved between services for
efficiency. We have shown that HIL can be used for bare-
metal self-service deployment of a Hadoop environment.
We have discussed integration into the SLURM scheduler
as well as richer self-service bare metal deployment tools
such as MaaS, Ironic, and Emulab. We also presented results
of a trace-driven economic simulation showing the value of
moving capacity between different services. We described
the architecture of HIL and a current realization of that ar-
chitecture. The Massachusetts Open Cloud (MOC) uses HIL
in its production deployment, in use by over one hundred
users on a daily basis since January 2016.
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