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Abstract
Kariz is a new architecture for caching data from datalakes
accessed, potentially concurrently, by multiple analytic
platforms. It integrates rich information from analytics
platforms with global knowledge about demand and resource
availability to enable sophisticated cache management and
prefetching strategies that, for example, combine historical
run time information with job dependency graphs (DAGs),
information about the cache state and sharing across compute
clusters. Our prototype supports multiple analytic frameworks
(Pig/Hadoop and Spark), and we show that the required
changes aremodest.We have implemented three algorithms
in Kariz for optimizing the caching of individual queries
(one from the literature, and two novel to our platform) and
three policies for optimizing across queries from, potentially,
multiple di�erent clusters.With an algorithm that fully exploits
the rich information available from Kariz, we demonstrate
major speedups (as much as 3×) for TPC-H and TPC-DS.

1 Introduction
Large-scale data-�ow oriented analytic frameworks, such as
Spark [72], Hive [62], and Pig [56], are broadly used inmany
public and private cloud environments. Today, cloud deploy-
ments commonly use centralized “data lakes” [3, 9, 10, 42, 58]
such as Amazon S3 [4], Azure Data Lake Store [11], and
Ceph [67] that are used by all the frameworks running in the
cloud. Although such dis-aggregation of storage o�ers many
bene�ts, it also carries major performance costs [61].
Caching and prefetching, which move frequently-used

datasets close to the analytic frameworks, are standard
techniques for improving performance [20, 50]. Data-�ow
oriented analytical frameworks share a number of features
that provide the opportunity to explore caching strategies that
di�er from prior work on CPU, page-based, and variable-sized
(e.g. web) caching:

• they expose the input objects and inter-job dependency
withDirected Acyclic Graphs (data-�owDAGs), where
complex DAGs providing a detailed view into future I/O
behavior;

• units of data access and computation are large, tak-
ing many seconds to access or run, allowing complex
strategiesnot feasible inmanyothercachingdomains; and

• recurring jobs,where the same code runs ondi�erentdata,
are common [19, 24, 48], allowing accurate prediction of
execution timing and characteristics [21, 40, 46, 66],

To illustrate these features, we consider con�dential traces
shared with us by an industrial partner recording 4 months

Figure 1:¿e value at the top shows the total amount of data
accesses in each hour. Green is the proportion of the accesses
to data that was not accessed previously in the hour. Orange
is the accesses that go to data previously accessed in the same
hour by the same analytic framework. Red is accesses to data
that was last accessed by another framework in that hour.¿is
analysis suggests that caching can be e�ective both to capture
repeated access to the same data from a framework, and access
by di�erent frameworks to the same data.

of usage from amid-sized (>100 nodes) cluster in production
use which is runningHive/Hadoop, Spark, nativeMapReduce,
and streaming jobs. Although themajority of jobs were small
(1-4 nodeDAGs), 90% of input data was read by complexDAG-
basedjobswith5nodesormore,withsomeDAGsinvolvingover
50 nodes. IndividualDAG stages averaged 5minuteswith some
stages taking as 6 hours. Over 90%of the jobs seen over the four
monthswere jobs that repeatedmany times,andmore than90%
of object reads were to objects repeatedly read. Clearly, there is
an enormous opportunity to optimize performance for repeat-
ing I/O intensive jobs that provide complete visibility in future
accesses and whereminutes are available to compute strategies.
In fact, a number of groups have started exploiting these charac-
teristics to developmore sophisticated caching and prefetching
strategies within analytics clusters [17, 20, 37, 44, 57, 69, 71].
Kariz is a platform designed to enable di�erent strategies

for caching and prefetching at the storage level. It collects
DAG information from analytic platforms and the execution
time that stages of the DAG take to execute. It alsomaintains
global information about what data is cached and resource
availability (e.g. storage bandwidth). ¿is information is
used by Kariz to accurately (§3.3) predict stage run-time.
We have implemented a number of strategies, including the
previously published strategy MRD [57] (Most Reference
Distance) that exploit DAGs to maximize cache hit rate, and
two new strategies, we call CP (Critical Path) and CMR (Cache
for Minimizing Runtime). CP exploits the stage run-time
prediction to cache data in order to reduce the critical path of
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stages in the DAGs. CMR relies on support in Kariz for partial
�le caching, prefetch partial data from each stage of the DAG
to improve performance beyond a single critical path.
¿e focus in Kariz for optimizing the critical path is not

primarily to improve the latency. Analytic platforms like Spark
typically reserve resources until the entire DAG has completed.
By optimizing the critical path, the resources reserved for a
DAG can be freed earlier, improving throughput; potentially
huge savings for complicated DAGs where the critical path
takesmuch longer thanmost of the work.
A fundamental di�erence between Kariz and previous

work [57,69,71,72] is thatKariz implements a community cache,
wheremultiple clusters, potentially running di�erent analytic
platforms, can concurrently share a single instance of Kariz.
A community cache is based on the idea that the near past of
a community of clusters data accesses may be a good predictor
of the near future data access pattern of new jobs from a cluster.
For example, within some �nancial services companies (e.g.

the employers of two of the authors) di�erent groups o en
create individual clusters with varied frameworks accessing
the same shared data-lake, with reasons for this fragmentation
including regulatory issues, security, organizational structure,
or preference. When new datasets arrive (e.g. recent market
data), many jobs are submitted independently bymembers of
di�erent groups, resulting in heavy access across most or all
frameworks and clusters. Anecdotal reports (e.g. as described
by the authors ofQuiver [48]) indicate similar behavior by data
scientists, who o en use company-wide datasets for joins or
trainingMLmodels. Finally,wesee similarbehaviorin thecon�-
dential traces,e.g. inFigure 1 at 3AMthe692 jobs aredistributed
across frameworks (11% Spark, 20% Oozie, 16% MapReduce,
47%Hive/MapReduce); 36% of Spark jobs share objects (42%
of total data) withHive, while tables accessed byOozie were a
subset of Hive accesses.
In contrast to previousworks [57,69,71], that focusedonopti-

mizing individual queries, Kariz also supports strategies for op-
timizingmultiple concurrent queries coming from potentially
di�erent analytic platforms to the community cache.We have
implemented two such strategies: 1) Shortest JobFirst (SJF) that
focuses cache resources to accelerate the fastest predictedquery
to free resources as quickly as possible. 2)Cache forMinimizing
Runtime ofmultiple DAGs (CMR-M), that additionally takes
into account storage bandwidth and the sharing of data across
multiple queries in selecting data to be cached and prefetched.
We have adapted two analytic platforms to exploit Kariz

(PIG/Hadoop and SPARK) and found that while signi�cant
e�ortwas required tounderstand the platform, the endchanges
were less than 100 LOC in each platform.
We experimentally evaluated our system on a 16-node bare-

metal cluster.Weuse thecharacteristicsof the con�dential trace
(includingquerysubmission rate,DAGstructure,dataaccessed,
data reuse) to runamixof syntheticworkloads fromTPCHand
TPC-DS. We demonstrate experimentally that the new algo-
rithms enabled by the rich information collected by Kariz (and

its support for partial caching) result in major performance
advantages with our synthetic workload on both Pig/Hadoop
(mean across all queries of 1.25x andmaximum 2x) and Spark
(mean 1.8x and 3x).¿rough simulation,we show that there are
signi�cant advantages to a community cache; e.g., an improve-
ment of up to 1.5x over separate per-analytics platform caches.
Key contributions of this work are: 1) demonstrating the

value of partial over than full �le caching, 2) a high-accuracy
run-time prediction based on the amount of cached state and
available storage bandwidth, 3) demonstrate that it is possible,
andin factsimple,toextract the informationneededforoptimiz-
ing performance frommultiple analytics platforms, 4) showing
that strategies can be developed and e�ective that target the di-
rect improvement of predicted run-time by optimizing critical
paths rather than implicit characteristics such as hit rate, and �-
nally, 5) a newarchitecture that demonstrates that a community
caching layer foranalyticsplatforms is feasible ando�ersvalue.

2 Background andRelatedWork
We begin by describing the data analytics frameworks targeted
by Kariz in further detail, providing an example to motivate
our approach, and then brie�y survey related work.
DAG-based frameworks: Oneway inwhich frameworks such
as Spark [72], Hive [62], Impala [47] and Pig [56] di�er from
traditional large-scale applications is in their use of Directed
Acyclic Graphs (DAGs) of operations (vertices) and their
input/output dependencies (edges). Before a user query is
executed, a query planner parses it, generating an unoptimized
logical plan with resolved tables and columns.¿e optimizer
performs optimizations such as predicate pushdown, prunes
columns and partitions, andmay even remove data from the
logical plan.¿e planner transforms the optimized logical plan
to a corresponding physical plan—e.g. the logical operation
TableScan is transformed to JsonScan or ParquetScan, and
byte ranges within input objects are assigned to each physical
operator before the physical execution plan is sent to the
execution engine. It is this physical execution plan which Kariz
uses for intelligent prefetching and caching.
De�nitions: As there are di�erences in terminology used by
each framework, in this paper we use the following terms: A
task, t, is the smallest unit of computation; tasks are scheduled
by the lower-level framework scheduler (e.g. Yarn [65]). A
stage, s, is a set of parallel tasks that execute the same code and
are submitted for execution simultaneously (e.g. mappers); a
higher-level scheduler (e.g. Spark’s DAG-scheduler) decides
when to submit a stage of tasks to the lower-level framework
scheduler. Data-�ow oriented frameworks have di�erent
terms for a set of stages linked by dependencies; we will follow
common usage and use the term DAG for them. For each
stage there is a set Is of input objects and their byte ranges for
that stage. Finally, some data-�ow oriented frameworks (e.g.
Pig [56]) divideDAGs into stage-sets, sets of stages in the DAG
without inter-dependencies, which may run in parallel but
must complete before the next stage starts.
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Figure 2: (a) 6-stage DAG divided into 3 stage-sets. Each stage
is labeled with run-time (max=no input in cache, min=all input
in cache), input �le name and size. (b) Execution schedule with
no prefetching or caching for gang-scheduling.

Disaggregated Storage:¿ese frameworks typically default to
usingHDFS [61],which stores data locally on computenodes in
a cluster. Yet inmodern practice, storage is o en disaggregated
from the systemsperforming analysis [42,52,54,58]. Data is typ-
ically stored on remote object stores such as S3 [4], Azure Blob
Store [23], or on-premises equivalents such as Ceph [8], and
accesseddirectly via e.g. the S3Aconnector [5].¿is enables, for
example, elastic analytics clusters [3] and serverless data analyt-
ics [59], but with a performance penalty, e.g. in 2018 the NetCo
researchers [42] measured object storage speeds of less than
50MB/s per VM (or 4MB/core) on widely-used cloud services.
Motivational example: Kariz is a caching and prefetching
system to accelerate computation in these frameworks; we
provide a simple example to give intuition about our approach
and how it contrasts with previous approaches. Figure 2 shows
a DAGmade up of 6 stages divided into three stages-sets (sets
of stages in the DAGwithout inter-dependencies, whichmay
run in parallel butmust complete before the next stage starts),
with the stages executing from the top to bottom. For each
stage, theDAG speci�es the input �les and size; we have labeled
each stage with its input �le (A/B/...) and size, and run-time
with (a) no data is in the cache, and (b) all inputs are cached
or prefetched by Kariz. We assume Kariz can predict stage
run-time from prior execution times, and that it can perform
�ne-grained partial caching with proportional speedup.
In stage-set 1 (top), we can see that there is no value in

prefetching input B for S0 (uncached duration 9) until we
have addressed S1 (duration 14), which determines the stage
completion time. If we cache all of the input to S1, however
(see Figure 2a), reducing its run-time to 6, some of that cache
space (and remote bandwidth) will be wasted, as S0 will now
determine stage-set completion time. Kariz instead caches
“just enough”ofeach input tominimize stage-set run-time—e.g.
caching 15 units of B will bring S1 duration down to 9, and
additional prefetching will be applied to both S0 and S1.

2.1 Relatedwork
We focus on recent work on informed (rather than history-
based) caching and prefetching for analytics frameworks, and
omit the vast literature on disk/�le [32, 33, 38, 39, 60], web [18],

and CPU/memory caching [29, 30, 34, 64].
Caching and prefetching rely on the existence of patterns

and correlations in real workloads; Jockey [31] and Corral [41]
show that the data access patterns of analytics frameworks are
highly repetitive and predictable. In Ernest [66] we see that in
real world deployments job run-times are predictable as well,
based on factors such as input size and jobs DAG structure.
Unlike Kariz, MC2 [70] and CD-LDS [27] are targeted to

caching/prefetching (of �les andmemory respectively) for gen-
eral applications, using OS and compiler hints rather than the
job DAG available in ourmore speci�c scenario. Unlike Kariz
which extracts the exact I/O access patterns from the analytic
applications, Quiver [48] builds a deep learning speci�c cache
layer and exploits the predictability of accesses in these appli-
cations for cachemanagement.MRD [57]makes prefetch and
evictiondecisionsbasedongraphdistance,with thegoalofmax-
imizing cache hit rate; accesses at the next stage in the graph are
prioritized over those farther in the future. LRC [71] does not
prefetch, butmakes eviction decisions based on reference count,
i.e. the number of references to input in stages not yet executed.
Dagon[69] ties cachingwiththeDAGscheduler,using the stage
schedulingpriorities toevict/prefetchdata.MemTune[68]man-
ages RAM-based caching in Spark, evicting/prefetching data
using only information from the currently runnable tasks.
Alluxio [2] (based on Tachyon [50]) and Apache Ignite [7]

are widely used for caching in analytics frameworks; the
caching component of Kariz is similar to these, although
with extensions for partial caching of objects. A number of
replacement and prefetching policies (as opposed to systems)
speci�c to analysis frameworks have been developed, as well:
PacMan [20] attempts to minimize run-time by considering
MapReduce job wave widths; while NetCo [42] and MRD
implement approximations to Belady’sMIN algorithm based
on predicted job execution order.
Kariz di�ers from these prior works in several ways: (1)

it makes use of partial caching, which gives signi�cant gains
when the cache size is not large compared to input object
sizes, and (2) it explicitly tries to minimize predicted DAG
completion time, rather than e.g. cache hit rate.

3 Kariz design
Kariz is a cache management and prefetching system that
controls admission/eviction to/from a storage cache, and
calculates prefetching schedules for data-�ow oriented
frameworks.We show the Kariz architecture (§3.1), its partial
caching (§3.2), runtime estimation (§3.3) and availability and
scalability strategies(§3.4).

3.1 Architecture
As shown in Figure 3, Kariz implements a community cache,
wheremultiple clusters, potentially running di�erent analytic
platforms, can concurrently share a single cache. Kariz
interfaces with the frameworks to obtain data-�ow DAGs,
execution states, and scheduling events, and collects historical
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Figure3:Karizarchitecture.¿eKarizcomponents extractDAGS,
schedulerandrun-time information fromtheanalytic framework.
¿e run-time predictor uses historical run-time information to
predict stage execution time.¿e Kariz cache management algo-
rithms generate caching/prefetching plans forDAGs by exploiting
the predicted execution time, partial caching, and data sharing
acrossDAGs.¿e cache planningmakes caching,prefetching,and
eviction decisions based on the generated plans to minimize the
DAGs runtimewhile taking account of data sharing for e�ciency.

information (logs) to use in predicting the run-time of future
jobs.¿e cache controller maintains information about what
data is cached and estimates bandwidth available to the storage
cluster. ¿e run-time prediction component estimates stage
completion time based on prior runtimes and current state.
¿e algorithms make up the core of the system, where the
task of a single-DAG planner is to come upwith a plan for an
individual DAG that is then combined into an overall plan
by themulti-DAG planner, which issues cache, prefetch, and
eviction commands to the cache controller and cache.
Interaction with analytics framework: ¿e framework
interface noti�es Kariz of DAG submission, providing the
physical query execution plan detailing input objects, sizes,
formats,operation (e.g.map,�lter, join), andparallel task count.
Kariz is also noti�ed when a stage-set (Pig) or stage (Spark)
begins or �nishes execution. In addition, Kariz needs job
(DAG) history information (i.e. logs) for prediction; typically
this is available through existing framework interfaces.
Storage bandwidth: Prefetching is constrained not only
by cache capacity but also by the e�ective bandwidth from
back-end storage, limited by the speed of the network or
the storage system itself. Kariz schedules operations to �t
within this bandwidth, which is currently con�gured based
onmeasurements but could be estimated dynamically as well.
Planners: In Kariz, scheduling of cache capacity and storage
bandwidth is performed in two stages.¿e single DAGplanner
examines individual DAGs and stages to determine caching
candidates—sets of data from one ormore objects which can
be prefetched or retained in the cache to speed DAG execution.
¿e multi-DAG planner, in turn, determines which of these
caching candidates to put into e�ect within constraints of
cache size and backend bandwidth, prioritizing completion
time within a DAG and throughput across DAGs, taking
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Figure 4: Physical experiment to illustrate partial caching: DAG
with 3 wordcount jobs with 32 GiB inputs and 63GiB total cache
capacity.

account of data sharing for e�ciency.
Cache control:¿e cache controller provides an abstract cache
interface to the Kariz planner. It is responsible for tracking
currently cacheddata, andmanaging the prefetching, retention,
and eviction processes; as a distributed cache scales [44] this
componentwillbe replicated. Its interface to thecachehasmeth-
ods to prefetch data on a �ne-grained basis, “pin” it in cache
or release it, and enumerate cache contents (e.g. on startup).

3.2 Partial caching
Hadoop and Spark are sensitive to stragglers [49], longer-
running taskswhichdelay completion of a computational stage.
Prior prefetching work [20, 42, 57, 71] assumes partial caching
of stage inputs will lead to such stragglers, giving no bene�t.
¿is will occur when done naively, as some tasks will �nd their
entire input in the cache, while others will fetch their full input
from remote storage.We instead assume �ne-grained control
over prefetching and cache retention/eviction, allowing data to
be cached in stridesmuch smaller than the input to a single task.
We see the utility of partial caching for real workloads with

limited caching in Figure 4.We de�ne an arti�cial DAGwith
three wordcount Mapreduce stages, dependent on the other
two; each with 32GiB input.With all-or-nothing caching we
can only cache the input to S2, minimizing stage 2 runtime, but
cannot speed up stage 1.With partial caching we still cache the
entire input to S2, yielding the highest runtime reduction per
unitofcaching,butcandistribute the remainingcacheacrossS0
and S1, reducing runtime closer to the fully-cachedminimum.
Kariz architecture explicity supports column-oriented for-

mats like Parquet [51] and Arrow [6]. It relies on physical
query plans to identify object ranges, rather than entire objects;
prefetch decisions would then bemade within these ranges.

3.3 Run-time prediction
Recent studies from in-production clusters atMicroso (e.g.
Graphene [36], NetCo [42], and others [24, 28, 40, 43]) show
that examined jobs are recurring—similar computations are
repeatedly executed on di�erent datasets. ¿e same studies
show that tasks extensively share common operands, and
that most user-de�ned operations are not custom programs,
but widely-used shared libraries (Cloudview Figure-(3) and
Figure-4(a & d) [43]). Recent studies, such as Ernest [66],
CherryPick [19], and Selecta [45] have shown good accuracy
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when predicting run-time for such recurring workloads, as a
functionof input�le size, size of cluster andDAGstructure [66].
In Kariz, we extend the runtime predictionmodel proposed

by Ernest to incorporate caching and bandwidth di�erences be-
tween cache and remote storage. Similarly to Ernest,we assume
that computation time scales linearly with the input size [66]
and the communication patterns among stages of a DAG could
be represented as sequential, aggregate, and shu�e operations.
Unlike Ernest that assumes that builds a runtime prediction
model for the entire DAG, Kariz predicts the performance of
stages according to the operands executed on that stage and the
communication pattern with the previous stage.
We predict stage time T given total input size S, with f ⋅ S

in cache, bandwidth rs and rc to storage bandwidth and cache
bandwidth, T tasks (e.g. mappers)1 andN executors, �tting the
following equation:

T =θ0+θ1
(1− f )S
rs

+θ2
f S
rc
+θ3

T
N
+θ4log(N)+θ5N (1)

where terms represent �xed startup time (θ0), data fetch
from backend storage and cache (θ1, θ2); following Ernest we
also incorporate terms for sequential (θ3), aggregate (θ4), and
shu�e θ5) cross-stage communication. We use Lasso regres-
sion [63] with non-negative coe�cients and cross-validation
to be resilient to over�tting when training on limited data.
At each scheduling event, Kariz identi�es the available

backend storage2 and cache, iterates over the future stages to
�nd longest and "slack" paths. Kariz does this by predicting the
runtimeof each stage in twocases—data in cache anddataneed-
ing to be fetched from the remote and uses Bellman-Ford [22]
with negative weights to identify the order of the longest paths.
We discuss the accuracy of this model further in Section 6.3.

3.4 Availability and Scaling
Kariz takes a simple approach to availability, based on the
principle that prefetching and sophisticated cache control
are optional—DAG-based frameworks and associated caches
(e.g. Alluxio) are widely used today with no prefetching or
cross-DAG scheduling. If Kariz crashes, the cluster continues
to operate, and the caches fall back to LRU a er the current
commands have completed; on restart Kariz can fetch all
needed states (DAG queue, cache contents, execution history)
from other components and resume.
Most computation in Kariz occurs in the cache controller,

which is responsible for block-level caching and prefetching
commands; this scales by adding additional controllers, each
responsible for some set of caches. ¿e central planning
algorithm is not currently scalable, and the cluster size which
can be controlled by a single Kariz instance is limited by its

1¿is is predicted by the analytic framework during query planning
2 Currently, Kariz splits bandwidth equally between all runningDAGs in

a cluster.
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Figure 5: (a) Job runtime vs. data in cache at job start for DAG
stage 2 (S2, S3, S4). Green represents caching needed to reduce
S3 runtime to that of S4; blue is caching to reduce S3, S4 to
their minimum runtime. Caching for S2 will never reduce stage
runtime, (b) With cache size 50, Kariz/CMR �nishes before
MRD (25 vs 29) despite a lower hit rate (83% vs 86%)

speed. In §6.8, we show that current unoptimized performance
should scale to a cluster of thousands of nodes.

4 Planners
We implement three planners in Kariz for scheduling caching
and prefetching: MRD [57], Critical Path (CP) [17], and our
new algorithm, Caching forMinimizing Runtime (CMR).
MRD (Most Reference Distance) is based on topological

distance, i.e. the number of DAG stages between two accesses
to a �le, evicting data with the longest distance until future
reference, and prefetching data with the shortest distance. CP,
described in an earlier workshop paper, prioritizes prefetching
and caching for jobs on the DAG critical path.We refer readers
to the respective publications for amore detailed description.
CMR considers the analytic framework DAG scheduling

schema andmakes full use of the runtime estimation, partial
caching, and bandwidth measurement features provided by
Kariz. To minimize DAG runtime, it jointly schedules cache
space and backend storage bandwidth.Whenmultiple DAGs
are active it divides cache space and prefetching opportunities
across DAGs using a heuristic that attempts tomaximize the
throughput—i.e. prioritizing shared data which will speed up
multiple DAGs.

4.1 CMROverview
To explain the intuition behind CMR, we again use the 6-stage
DAG fromAlgorithm2, scheduledwith gang scheduling, exam-
ining stage-set 2 (stages 2, 3, and 4) inmore detail. In Figure 5a,
we assume a graph of runtime vs. amount of input in the cache
for these stages. For the sake of simplicity of the discussion, it
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showsapiece-wise linear function forstage timeas a functionof
prefetched/retained data. In reality, we use runtime prediction
(Section 3.3) topredict the requiredcachesize toachievecertain
improvement. In Figure 5a, we see S3 runtime decreases from
14 to 10 as its 12 units of data are cached; S4 from 13 to 10 with
6 units of caching, and S2 from 9 to 2 with 14 units of caching.
In making prefetch/retention decisions CMR examines

candidate caching sets—sets of input objects and their ranges
which speed up one or more stages in a stage-set. ¿e �rst
candidate here, shown as a green horizontal bar, represents
the fraction of input to S3 needed to reduce its runtime to
that of S4.¿e next candidate, shown in blue, corresponds to
the remaining input to S3 and S4, reducing their runtime to a
minimum.Note that the input to S2 is not part of any candidate
set, as S2 will always complete before S3 and S4 and never a�ect
stage-set completion time.
¿ecoreofCMRconsistsofenumeratingthesecandidatesets

andpick them indecreasingorderof runtime improvementand
prefetching or retaining all sets which �t within cache size and
bandwidth constraints.We see CMR compared toMRD in Fig-
ure 5b,with a cache size of 50. AlthoughMRDachieves a higher
hit rate (86%) thanCMR(83%),CMR’s achieves a lowerruntime
(25vs 29)by ignoring stages like S2with“slack” in their schedule
and focusing on only ones determining stage-set runtimes.
In our simpli�ed example, there is no need to compare

caching candidates against each other—once we decide not to
cache input to S2, there is enough cache space for all remaining
input.With fewer resources, however, wemust choose between
e.g. retaining data for one future stage vs. prefetching for a
di�erent one.
We do this based onmarginal utility, i.e. the ratio of com-

pletion time saved by caching a candidate set to its size.¿is
is similar to the fractional knapsack problem, i.e. achieving
maximum reduction of run-time given a �xed cache capacity,
hence the use of cost:bene�t in comparisons.¿is allows com-
paring candidates acrossDAGstages, forexample, todetermine
whether cache space and storage systembandwidth in stage-set
1 would be better spent prefetching for stages in stage-set 2 or
stage-set 3.

4.2 CMR
¿eCMRplanner runs upon receiving the stage-set scheduling
events fromtheanalytic framework, identifying theprefetching
and cache pinning/unpinning operations to be executed
during that stage for execution in following stages; prefetching
is scheduled so that it will complete by the beginning of the
stage in which the data will be used. As with prior work, we
assume the existence of a “stage 0” before the DAG begins
execution; in practice, this would correspond to the last stage
of the previously-executed DAG.We describe CMR operation
in the case of a single DAG in two parts: enumeration of
caching candidates, in Algorithm 1, and candidate selection
and execution, in Algorithm 2.

Algorithm 1Caching candidate set enumeration

Input:
2: T1 , T2 , . . . no-cache job completion times, longest �rst

α1 , α2 , . . . per-job time improvement per unit cached
4: I1 , I2 , . . . job inputs

6: Output:
c1 , c2 , . . . caching candidates

8: c i speci�es data to be cached from I1 ...I i , and has value
(i.e. time saved) =Ti−Ti+1

10:
procedureCandidates(stage i)

12: Tmin =T1−α1 ⋅∣I1 ∣
t=(T1−T2), c1 ={I1 ∶ t

α1
}

14: t=(T2−T3), c2 ={I1 ∶ t
α1
, I2 ∶ t

α2
}

etc. while T >Tmin
16: end procedure

¿e candidate enumeration algorithm in Algorithm 1 exam-
ines stages from longest to shortestwithin a stage-set, enumerat-
ing candidates in decreasing order of bene�t (completion time
saved) to cost (size).¿e�rst candidatewill be from the input to
the longest stage, of su�cient size to reduce its runtime to that
of the next-longest—i.e. the green segment from Figure 5a.¿e
secondcandidate inFigure 5a corresponds to theblue segments,
reducing the runtime of S3 and S4. Candidate enumeration
stops when nomore candidates can be enumerated, e.g. in this
case where S3 and S4 runtimes are reduced to their minimum.
Candidate selection is performed by Algorithm 2; we

describe this �rst for the case of a single active DAG, before
discussing its operation acrossmultiple DAGs.
A er enumerating caching candidates for all future stage-

sets in decreasing bene�t:cost order, we compute the “slack”
back-end storage bandwidth available in each stage-set based
on the current estimated stage-set completion time andmea-
sured storage access rate. Candidates which are “too early” are
eliminated; these are ones that may be safely deferred to a later
stage-set and still complete by the time of the stage-set inwhich
they are needed.
We then consider the remaining candidates—if a candidate

“�ts” into the remaining cache space and bandwidth, we
schedule the prefetching operation (if needed) and “pin”
the candidate in cache until the end of the stage in which
it is needed. In the next step, CMR updates available cache
space and slack bandwidth (prefetch bandwidth), as well
as adjusting stage completion time estimations to account
for the speedup. If we run out of prefetch bandwidth before
cache space (omitted for clarity in Algorithm 2), we continue
examining in-cache candidates until we run out of cache space.
¿is strategy not only calculates a set of data to prefetch

but implicitly calculates evictions as well. Data currently in
the cache which is valuable for reducing the runtime of a later
DAG stage will be part of one of the selected candidate sets,
and will be pinned through the end of its scheduled use; the
remaining cache contents are unpinned and may be evicted
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Algorithm 2Cache candidate selection: schedule
prefetching/pinning for later stages

Initial Conditions:
2: t0 =0, t i = t i−1+max(Ti ,∗) ▷ Estimated stage completion times

f etch i = sum(∣I i ,∗∣) ▷ committed bandwidth by stage
4:
Input:

6: candidate lists for each active DAG

8: Output:
prefetch, pin, and unpin operations

10:
procedure Plan(l ists)

12: while slackbw and cache available do

l ists← sort
⎛
⎜
⎜
⎝

Tl i st
∑

b∈ f rags(l i st)
( 1
nb
)
for l ist in l ists

⎞
⎟
⎟
⎠

▷

nb ∶Ndags shared b.
14: link l1andl2 if l1 share blocks with l2 for each l1 and l2 in l ists

slackbw( j)← r ⋅(t j−t j−1) ▷ bandwidth slack in stage j
16: c=best(head(l ist) for l ist in l ists) ▷ best candidate

skip c if stage(c)>now and c �ts in slackbw (future)
18: s← stage(c)

f etchs← f etchs−∣c∣ ▷ ∣c∣ no longer demand-fetched
20: if c not in cache then

f etchnow← f etchnow+∣c∣
22: prefetch(c)

end if
24: adjust ts ,... for c speedup

pin c until end of s
26: cache used += ∣c∣

end while
28: end procedure

(e.g. in LRU order) if necessary tomake room for new data.
Event Scheduling: in most analytic frameworks that imple-
ment the event-based scheduling schema, e.g. Spark, the root
stages of the DAG (those with no-dependency) are responsible
for fetching DAG input data. In this case, CMR, for each root
stage, predicts the longest path to the leaf stages of the DAG
(those with that produce output).¿en, it sorts these paths ac-
cording to the predicted run-time and recursively identi�es the
cache candidates for them.

4.3 Multi-DAGScheduling
Next, we describe the algorithm that prefetches for multiple
DAGs simultaneously,Cache forMinimizing Runtime ofMul-
tiple DAGs (CMR-M). It attempts tomaximize throughput by
minimizing the time to completion of sequences of DAGs.
CMR-Massumes the use of static partitioning (default setup)

in Spark and Pig, where resources are allocated to a DAG for
the entire period of execution [14].
We enumerate caching candidates using Algorithm 1, then

we choose to execute candidates in Algorithm 2, as before;
selecting the “best” cache candidates fromcompetingper-DAG
lists via a heuristic score for data sharing, sharing-aware weight.
¿e sharing-aware weight is calculated per cache candidate and
gives preference to candidates that are shared by other running

DAGs, as the throughput increase from prefetching will be
higher than that indicated by the single-DAG value.
¿e sharing-aware weight is similar to the resident set size

(RSS) calculation [35] from ‘ps’: data sharedbymultipleDAGs is
split equally among them before calculating cost.We calculate
the sharing-aware weight on a block-per-block basis, counting
the number of DAGs nb sharing any block b (Equation 2).We
then calculate a "unique �le size",Uc , counting each block in
C shared between nb DAGs as having size 1

nb
(line 12− 14 in

Algorithm 1). We then re-compute themarginal utility using
this weight and use this utility to compare candidates across
DAGs. Finally, we �nd the “partners” to the selected candidate,
i.e. those sharing blocks with it, and select those for prefetch-
ing/caching as well.

Us = ∑
b∈ f rags(C)

( 1
nb
) (2)

5 Implementation
¿e Kariz implementation combines a Kariz service with
a our previously developed [44] caching layer embedded
within the Ceph Rados Gateway (RGW [8]).Wemodi�ed this
caching layer for Kariz by integrating �ne-grained prefetching
and pinning (∼100 C++ LOC). We have also modi�ed both
Pig/Hadoop [56] (∼100 Java LOC) and Spark [72] (30 Scala
LOC) toworkwithKariz.Wediscuss eachof these components
in turn.

5.1 Kariz Service
Our Kariz prototype is about 5000 lines of Python3, including
the runtime predictor, theMRD, CP and CMRDAGplanners,
and the CMR-M multi-DAG planner. We use the sklearn
package for runtime prediction, and graph-tool for graph
traversal.¿eKariz service also includes a cache coordinator
that translates high-level operations from the planner into
individual block operations on the cache.
Interfaces between the analytic frameworks and Kariz are

listed in Table 1. ¿e newDAG, stageStart, and completeDAG
noti�cations from the framework trigger DAG planning
activities, and carry information (e.g. annotatedDAGs) needed
for planning.¿e prefetch, pin, and unpin requests to the cache
controller, in turn, translates high-level requests from the
planner (specifying object and stride) into requests to the
cache to fetch, pin/unpin, or evict individual blocks.

5.2 Caching layer
We build Kariz by extending the multi-tenant cooperative
caching architecture recently added to RGW [44]¿is RGW
cache layer expands to multiple clusters and allows di�erent
frameworks such as Hadoop MapReduce [26] and Apache
Spark [72] to cache and share their inputs. Our extension to
support Kariz involved around 100 C++ LOC.¿is involved

3http://github.com/maniaabdi/Kariz
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Table 1: Interface fromAnalytics framework (e.g. Pig or Spark)
to Kariz and between Kariz and the Cache

API Description
newDAG(ID, DAG) newDAG started

→
K
ar
iz stageStart(ID, Jobs in stage scheduled

stage) for execution
completeDAG(ID) DAG completed.
prefetch(blocks) Asynchronously fetch

→
C
ac
he

blocks into cache
pin(blocks) Lock blocks in cache.
unpin(blocks) Release blocks to be

replaced as space is needed

adding the operations to prefetch pin and unpin lists of
4MB chunks of datasets, as depicted in Table 1. ¿e small
changes required is evidence that we will be able to integrate
Kariz with other caching services. Kariz could integrate with
other distributed caching systems such as Alluxio [2, 50]
and coordinates their caches. In the case of Alluxio minor
modi�cations are needed to support partial prefetching.

5.3 Analytical frameworksmodi�cations
To exploit Kariz, an analytic framework must provide some
interface thatKariz can use to extract run time interface andno-
tifyKarizofnewDAGs, the startof stages, andDAGcompletion
using the interface in Table 1.We have found it relatively easy to
develop adaptors for two frameworks, Pig [56] and Spark [72];
suggesting that framework developers will �nd it easy to add
the required functionality to take advantage of Kariz.
Pigmodi�cations:Modi�cations toPig are 100 JavaLoC in the
following functions: (1) compile() inMapReduceLauncher.java
to extract the DAG, annotate it, and invoke newDAG. (2)
launchPig() inMapReduceLauncher.java to extract the stage
and invoke stageStart. (3) dumpStats() inMRPigStatsUtil.java
to invoke completeDAG; Kariz then request detailed statistics
fromHadoop history server.
Spark modi�cations: Modi�cations to Spark are 50 Scala
LoC in the following functions: (1) the constructor in SQLEx-
ecutionRDD.scala, and toRdd() in QueryExecution.scala to
annotate the RDDDAG, (2) runJob() in SparkContext.scala to
extract DAG and invoke newDAG, where the ID is based on a
UUIDand spark application ID, (3) submitStage() inDagSched-
uler.scala to extract the stage and invoke stageStart (4)When
the SparkContext shuts down, it invokes completeDAG; Kariz
then request detailed statistics from Spark history server.

6 Evaluation
We use a combination of experimental evaluation on our
prototype and simulation to evaluate Kariz. A er describing
the experimental infrastructure and simulator (§6.1), we
experimentally demonstrate the value of partial caching
(§6.2), examine the accuracy of our run-time prediction (§6.3),
and then show results for the di�erentDAGplanners with both
PIG and Spark (§6.4). ¿e remainder of the evaluation uses

Table 2: Hardware con�guration

Compute Server Cache Server
CPU 1x Intel E5-2650 2x Intel E5-2699v3
RAM 128GB 128GB
Disk 1x 500GBHDDs 2x Intel P3600 1.6 TB

5400RPM NVMe SSDs (RAID0)
Network 10Gb/s 40Gb/s

Table 3: So ware con�guration
Hadoop Pig Spark

Version 2.8.4 0.17.0 2.4.5

simulation to evaluate the single DAG planners for a larger
set of queries (§6.5), explore themulti-DAG planners for both
queries fromseparatePIGandSparkclusters, andwhenKariz is
simultaneously used by both PIG and Spark clusters (§6.6) and
�nally perform sensitivity (§6.7) and scalability (§6.8) analysis.

6.1 Setup
Infrastructure: ¿e physical experiments with Pig/Hadoop
and Spark are run on a 16 node cluster with the hardware and
so ware con�guration in Table 2 and Table 3.We provisioned
the compute nodes via diskless provisioning [53] and use the
local disks of the compute nodes to deploy local HDFS.We use
the NVMe SSDs of the cache servers to build the cache layer.
Simulator: We implement a simulated execution framework
and cache, allowing additional experiments not possible on the
physical cluster4. Execution time for each job to be simulated
was determined by the run-time prediction model trained
for each operation in Pig/Hadoop and Spark with di�erent
cache sizes. A random term was added to the runtime, with
standard deviation taken frommeasured run-time. Additional
simulator logic mimics the Kariz extensions to the framework
scheduler, allowing the same Kariz code to be used in physical
experiments and simulations.

6.2 Partial Caching
We evaluate a key premise of Kariz: that straggler-resistant
partial caching can reduce runtimes. In Figure 6a, we see
experimental results for Wordcount and TeraSort on a
16-node Hadoop cluster with 128 mappers and 32GiB input
�les. In Figure 6b, we see the Wordcount benchmark on
a 16-node Spark cluster with 64GiB input �les, and vary
bandwidth to remote storage.
With both Hadoop and Spark we see a linear relationship

between run time and cached data.While these are trivial ap-
plications, given that the platformpartitions the data across the
mappers, we believe this is good evidence that partial caching
canbe e�ective. In contrast, randomchoice of 4MiBblockswas
found to produce little or no speedupwhen less than 60%of the
inputwas cached, and (as expected) caching a strict pre�xof the
�le produced no improvement until the entire �le was in cache.

4Aswell as timely reproduction a er algorithm changes.
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(a)Hadoop:WordCount and TeraSort, cached data vs. runtime, 128
mappers, 1Gbit backend bandwidth.

(b) Spark: cached data vs. runtime for WordCount and di�erent
backend bandwidth on 32GiB input, 128 partitions.

Figure 6: Partial caching

We also see that the slope varies with storage bandwidth and
application, motivating our design to build per-operation run-
time predictionmodel that incorporates storage bandwidth.

6.3 Runtime prediction
Training model: to train the runtime prediction models, we
ran Lasso regression with α=0.001 on each category. On our
test cluster, we run all 44 queries from Pig-TPCH [13] and
Spark-TPCH [16], 13 times each, with di�erent con�guration:
(1) input datasets randomly selected from 8GB to 80GB, (2)
number of cached blocks randomly selected from 0% to 100%,
(3) the bandwidth to backend storage restricted randomly
from 1Gbps to 40GBps, and (4) the number of executors per
query was con�gured randomly from the 2, 4, 8, 16. In total,
we captured statistics for 286 queries for Pig/Hadoop and 286
queries for Spark. We use the 80%/20% split to train and test
eachmodel. Table 4 shows the average run time of the test set,
the rootmean square error (RMSE) of the runtime prediction
model per operation and average absolute error.
Predictionaccuracy:¿ecaching andprefetchingplanners de-
pend on the Kariz runtime predictor being accurate enough to
predict the correct paths (longest, the 2nd -longest, etc.) to cache
for.We ran the 22 queries from the Spark TPCH benchmark,
with random input sizes, on a 16-node cluster with no caching.
Wepredict therun-timeusing the trainedmodels: for20queries
out of 22 the order for 1st , the 2nd , and 3rd longest path were
identi�edcorrectly. ForqueryQ11, itmis-predicts the 1st longest
path, and for query Q21, the order of the 2nd and 3nd longest
pathswere reversed. In these two cases, the errors were in paths
di�eringby less than 3s; in almost all cases eitherbothorneither
wouldbe cached,and themisprediction impactwouldbeminor.

In Figure 7, we see the ratio of the actual to predicted longest
path.¿emaximumerrorwas 27%andonaverage 7%.Weanno-
tate each bar with the bandwidth, the input size, and the actual
runtime of the longest path for that query. For Q6, where we
had themaximum relative error, the actual runtime was short.

6.4 Experimental evaluation
We compare CMR with two DAG-informed policies: (1)
MRD [57], which caches and prefetches in breadth-�rst order
to increase hit ratio, and (2) our CP [17] which caches and
prefetches for jobs on the DAG critical path.
Workloads: We use the characteristics of the con�dential
trace (including query submission rate, DAG structure, data
accessed, data reuse) to construct a mix of synthetic workload
using standard analytic benchmarks (TPC-H and TPC-DS) be-
cause of the lack of public workloads.¿e synthetic benchmark
represents anhourof data processing.We scale down the size of
our cluster and theDAGsubmission rate by a factor of 10; in the
con�dential traces, the job submission rate follows the Poisson
distribution with distribution parameter(λ) of 0.2 (on average

Table 4: Accuracy of runtime prediction per operation

(a) Pig operations

Operation runtime
(s) RMSE (s) Absolute

(s)
Co-group 330 63.27 61.14
Map only 5.8 0.33 0.26
Groupby 14.6 1.8 1.6
Combiner 23 8.3 2.8
Hash join 99.3 37 25
Replicated join 251 38.5 55
Order by 10.6 0.39 0.49
Sampler 10.74 0.58 0.54

(b) Spark operations

Operation runtime
(s) RMSE (s) Absolute

(s)
Hash aggregate (HA) 1.3 0.66 0.52
Scan 12 3.3 2
Scan, Filter 20.2 6.28 3.27
Scan, Filter &HA 30.6 5.2 3.97
Filter &HA 2 0.66 0.63
Sortmerge join 3.51 1.5 0.94
Sortmerge join&HA 3.53 0.75 0.53

Figure 7: Ratio of actual to predicted longest path on di�erent
Spark queries. See text for Q11.
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Figure 8: Pig-MapReduce performance for selected TPC-H
queries - small DAGs (1,4), long sequential (2,3,5), tree-like
(10,11,14), aggregate (15), large/complex (7,19-22). 64GiB data
set, 40GiB cache, cold start.

Figure 9: TPC-H query performance using Spark contrasting
CMR, CP,MRD and no caching.

702 queries were submitted per hour). ¿us, we use Poisson
distributionwith λ of 0.02 to generate query submission events
(result in 67 queries).¿en, at each event, a query is drawn from
a pool of 22 TPC-H [13], and 19 TPC-DS [12] queries translated
into Pig Latin [56]. To select queries from the pool, we cate-
gorize queries according to their DAG structure for a sampled
hour. We map each query in the pool to a category with the
maximumDAGsimilarity (maximumcommon subgraph [55]).
To be consistent, for Spark, we use the same set of queries from
Spark TPCH [16] and Spark TPC-DS benchmarks [15].
For the sampled hour, 30% of the objects were accessed at

least twice.¿is is similar to the ZipF distributionwith a=1.125.
Accordingly, we assign each query a dataset selected from this
distribution, giving a trace of 496 accesses over 357 unique
input objects, with 78 accesses to the most used input object,
consistent with our evaluated traces. ¿en, we associate the
input sizes to the datasets by randomly choosing from 4GB,
to 256GB. Finally, we use the standard TPC-H [13] and TPC-
DS [12] input generators to create CSV datasets.
¿e cache size is set to 40GB and the dataset size is 64GB.

¿eRGWcache network to datalake is throttled to 10Gbps. For
each query, we assume 5 seconds queue time, the minimum
observed queue time in the evaluated traces, before submitting
the �rst stage for execution to the execution engine. We take
advantage of the queue time to start prefetching for the DAG
andwe clear the cache before each run.¿e reported numbers
are the average of three runs.
Performanceevaluation: Figure 8 andFigure 9 shows runtime
of selected TPC-H queries in, respectively, Pig-Latin and Spark

comparing CMR, CP,MRD, and no caching.
Our evaluations show that relative to the no caching case,

CMR can improve query performance by up to 2 times for
Pig-MapReduce and up to 3.2x on Spark, withmean speedups
of 1.3x and 1.8x respectively. Running on the Pig-MapReduce
framework and comparing toMRD andCP, CMR can improve
the runtime by up to 2x and 1.8x and in average by 1.3x and
1.3x respectively. Our experiments using LRU shows similar
behavior to no-prefetching (gray bar).
With the Spark framework, CMR can improve the runtime

compared toMRD and CP by up to 3.1x and 3x and in average
by 1.8x and 1.7x respectively. Spark shows more sensitivity
to the backend storage bandwidth than MapReduce, Since
MapReduce imposes extra overheads such as JVM start
up( [45, 46]).¿is results in sharper speed up slope for CMR
on the Spark framework than the Pig-MapReduce framework
and better cache space utilization compared toMRD andCP.
Q1 and Q4 represent small-sequential queries; with reads

only at the begining of the job in the graph. Due to the
partial caching strategy implemented by CMR, it has better
performance compared toMRD, CP on both Pig/MapReduce
and Spark frameworks.¿e table shows the average speedup:

Q1 andQ4 MRD CP no caching
Pig/MapReduce 1.5x 1.5x 1.6x

Spark 1.8x 1.4x 2.2x

For Q2, Q3, Q5, Q10, Q11, Q14, and Q15, the structure of
DAGs generated by Pig and Spark is di�erent, which leads
to di�erent caching decisions. On Pig-MapReduce, Q2, Q3,
andQ5 are long sequential queries with small reads in the �rst
stages and large reads in the following one. Here, the CMR
rankingmechanismmakes it possible to prioritize prefetching
plans that havemore e�ect on the sequential DAGs. Q10, Q11,
andQ14 are long sequential graphs andQ15 is a large aggregated
graph. For these, the combinations of stage oriented decisions
and partial caching leads to performance improvement.
Q7 and Q19 to Q22 have large complicated DAGs on both

Pig-MapReduce and Spark.¿e excellent relative performance
of CMR over the other options for these queries (see table
below) is encouraging, as our analysis of real-world traces in
§1 showed over 90% of data read by complex queries like these.

Q7 andQ19-Q22 Pig/MapReduce Spark

Average
MRD 1.4x 1.8x
CP 1.5x 1.5x

no caching 1.6x 2.8x

Maximum
MRD 1.8x 2.9x
CP 2x 2x

no caching 2x 3.2x

6.5 Simulated evaluation - SingleDAGs
We evaluate CMR across the synthetic workload (67 TPC-H
andTPC-DS queries) using our simulated cache and Pig frame-
work. In Figure 10 we see CMR, CP, andMRD performance
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Figure 10:Runtime by DAG class for 67 queries; 128GiB cache,
10 Gb/s backend bandwidth.

relative to no cache, with a simulated cache size of 128GiB,
grouped by query type.
Median (center line) and 75th-percentile (top of the box)

performance are seen to be higher than MRD or CP in all
cases. CMR performance is much higher (1.6x vs 1.2x forMRD
and CP) for aggregation queries, although the top quartile
of queries achieved relatively similar speedups for CMR and
MRD. For complex queries CMR outperformed MRD by
large amounts, with a 75th-percentile speedup higher than the
maximumMRD speedup.

6.6 CMRPerformance onMultipleDAGs
Kariz is a community cache that considers data sharing between
DAGs running on one or several analytic frameworks.We sim-
ulate Kariz tomeasure the performance under two scenarios:
Multiple DAGs in a single analytic cluster: We compare
the performance of three multi-DAG strategies: CMR-M,
shortest-job-�rst (SJF) (prefetches/caches for DAGswith the
shortest remaining runtime), and Isolated (static isolated cache
partitioning for each DAG) [25]. In all three cases, CMR is
used tomanage within-DAG caching/prefetching decisions.
We simulate 1 TB of cache, 25Gbit/s network bandwidth,

and 100Gbit/s cache bandwidth.We generate a workload that
consists of 200 randomly-chosen Spark TPC-H [16] queries
with a dataset size of 164GB in a cluster that can handle 10
simultaneous queries. For the Isolated strategy, we allocate
128GiB of cache space to each query. To produce di�erent
sharing patterns, we generate 6 traces of 200 datasets generated
by changing the ZipF distribution parameter (a: 1.001-2.4)–
e.g. a = 1.001 giving a trace with 192 unique dataset accesses.
Finally, wemap each dataset in every trace to one query.
In Figure 11,we see the end-to-end runtimeof all 200TPC-H

Sparkquerieswith 6 traces,whenwe increase the reuse/sharing
of datasets within the trace. As seen, CMR-M outperforms
both isolated cache and shortest job �rst by up to 1.51× (a=1.23)
and 1.14× (a = 1.38), respectively. As depicted, the SJF policy
can degrade performance compared to isolated cache. ¿e
reason is SJF favorsDAGswith smaller predicted runtime.¿is
results in DAGs with longer runtime deprived of the cache and
therefore to readmost of their data from the backend. For the
Spark cluster, the runtime for the base case (all data remote)
is 13000 seconds; for a = 0.001, i.e. almost no data sharing, the

Figure 11: Performance of di�erent caching strategies when
di�erent level of data sharing exist within the cluster. (simulated)

Figure 12: Performance of di�erent frameworks with shared
cache vs isolated cache per framework. Each cache has 1 TB cache,
25 Gb/s storage-bandwidth, and 100Gb/s cache bandwidth.
(simulated)

performance gain over that comes from data prefetching.
Two analytic clusters: We compare the performance of Kariz
with multiple analytic clusters (Pig/MapReduce and Spark)
sharing a cache vs the case where the cache is statically parti-
tioned, using CMR-Mwith the CMR single-DAG planner.We
use the same 200 SparkTPC-Hqueries, combinedwith 100 Pig
TPC-H queries randomly selected from the same distribution,
generating 6 traces with 300 datasets each as described above.
As shown in Figure 12, by increasing the data sharing across

analytic clusters, both clusters have seen runtime improvement
vs the statically-partitioned case. Pig cluster runtime improves
by up to 1.5× (a=1.38), with amean of 1.3×.¿e Spark cluster
bene�ts from both prefetching and caching, improving on
average by 1.27× and up to 1.52× (a = 1.128). ¿e dashed
horizontal line in the Figure 12 shows the extreme case when
one dataset is shared by all the queries in both clusters.

6.7 Sensitivity Analysis
We analyze sensitivity to cache size and prediction errors.
Cache size: Figure 13 shows the average speed up of all DAGs
from the mixed workloads (§6.1) as we vary the cache size
from 16GB to 400GB (the size of the dataset) with the network
bandwidth to the backend set to 10Gbps. CMR achieves
substantially higher performance compared toMRD andCP
until the entire data set �ts in the cache. For example, when
the cache size is 64GB, CMR outperformsMRD and CP by up
to 51% and on average 10% and 8% respectively.
Impact of runtime mis-prediction: To see the e�ect of run-
timemisprediction we introduce amultiplicative error factor
Rerror . We simulate 27 queries with a total of 310 jobs from the
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Figure 13:Mean runtime across all queries vs. cache size, nor-
malized to uncached runtime; 10 Gb/s bandwidth. (simulated)

Figure 14: Sensitivity to misprediction error: introduced error
vs. performance degradation - 30% of predications adjusted by
factor of (1+Rerror). (simulated)

mixed workloads in single-DAGmode, with 60% of jobs recur-
ring, and randomly pick 130 jobs (∼42%) to adjust by Rerror .
In Figure 14 we see normalized change in runtime, relative

to nomis-estimation, for values of Re rror between 0.5 and 1.5.
CMR performance drops when the runtime is mispredicted,
especially in the negative direction, but when only a fraction
of jobs aremispredicted the e�ect is small.

6.8 Scalability
To analyze CMR scalability, we run (in simulation) a pool of 67
queries(DAGs) fromTPC-H and TPC-DS benchmarks. Using
timing fromtheAlibaba traces [1] (80%ofDAGstages complete
in less than one minute) we assign a random execution time
between 1s to 60s to each stage.We submit DAGs at a rate of 90
perminute andmeasure the execution time for CMR planning.
Figure 15 shows CMR planner runtime vs a number of

currently executing DAGs. Execution time (in unoptimized
Python) is seen to be under six seconds in all cases, with up to
160 concurrent DAGs. Based onAlibaba statistics this would
allow scaling a single controller to a cluster of 1500 to 2000
servers, withminimal delay in issuing prefetch commands.

7 Conclusion

Kariz is a cachemanagement system for analytic frameworks
that makes possible cache algorithms informed by DAGs,
historical run time information,currentcache state,andstorage
bandwidth.We have implementedmultiple algorithms using
Kariz, including a newCMR algorithm that achieves dramatic
performance improvements by exploiting all this information.

Figure 15:CMR-M scaling - planner runtime vs running DAGs.
(simulated)

Wedemonstrate that new analytics frameworks (100 LOC
for PIG/Hadoop, and 30 LOC for SPARK) and cache systems
(100 LOC for the cache we used) can easily be integrated. Our
work is the �rst to: 1) support multiple concurrent DAGs,
2) employ more than one of bandwidth, runtime prediction,
and DAGs, 3) explore a cooperative caching model, and
4) employ straggler resistant partial caching.
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